

Postfix
The Definitive Guide

Other networking resources from O’Reilly

Related titles sendmail

qmail

sendmail Cookbook

Programming Internet Email

Essential System
Administration

TCP/IP Network
Administration

Running Mac OS X Panther

Mac OS X Panther for Unix
Geeks

Mac OS X Panther in a
Nutshell

Mac OS X Panther Pocket
Guide

Learning Unix for Mac OS X
Panther

Applescript: The Definitive
Guide

networking.oreilly.com networking.oreilly.com is a complete catalog of O’Reilly books
on networking and related technologies, including sample
chapters and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms,
programming languages, and operating systems.

Conferences O’Reilly & Associates brings diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the inno-
vator’s knowledge into useful skills for those in the trenches.
Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or simply
flip to the page you need. Try it today with a free trial.

Postfix
The Definitive Guide

Kyle D. Dent

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

,psfx.book.2768 Page iii Thursday, March 24, 2011 1:20 PM

Postfix: The Definitive Guide
by Kyle D. Dent

Copyright © 2004 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media, Inc. books may be purchased for educational, business, or sales promotional use. On-
line editions are also available for most titles (safari.oreilly.com). For more information, contact our cor-
porate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram

Production Editor: Reg Aubry

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

December 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Postfix: The Definitive Guide, the image of a dove, and related trade dress are
trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

ISBN: 978-0-596-00212-1

[LSI] [2011-03-25]

,psfx.book.2768 Page iv Thursday, March 24, 2011 1:20 PM

v

Table of Contents

Foreword . ix

Preface . xi

1. Introduction . 1
Postfix Origins and Philosophy 1
Email and the Internet 3
The Role of Postfix 5
Postfix Security 6
Additional Information and How to Obtain Postfix 8

2. Prerequisites . 10
Unix Topics 10
Email Topics 12

3. Postfix Architecture . 19
Postfix Components 19
How Messages Enter the Postfix System 20
The Postfix Queue 22
Mail Delivery 22
Tracing a Message Through Postfix 25

4. General Configuration and Administration . 28
Starting Postfix the First Time 29
Configuration Files 30
Important Configuration Considerations 41
Administration 44

vi | Table of Contents

master.cf 47
Receiving Limits 51
Rewriting Addresses 52
chroot 56
Documentation 57

5. Queue Management . 58
How qmgr Works 58
Queue Tools 62

6. Email and DNS . 68
DNS Overview 68
Email Routing 69
Postfix and DNS 72
Common Problems 75

7. Local Delivery and POP/IMAP . 77
Postfix Delivery Transports 77
Message Store Formats 78
Local Delivery 80
POP and IMAP 83
Local Mail Transfer Protocol 84

8. Hosting Multiple Domains . 89
Shared Domains with System Accounts 90
Separate Domains with System Accounts 90
Separate Domains with Virtual Accounts 91
Separate Message Store 95
Delivery to Commands 95

9. Mail Relaying . 103
Backup MX 103
Transport Maps 106
Inbound Mail Gateway 109
Outbound Mail Relay 110
UUCP, Fax, and Other Deliveries 111

Table of Contents | vii

10. Mailing Lists . 112
Simple Mailing Lists 113
Mailing-List Managers 117

11. Blocking Unsolicited Bulk Email . 125
The Nature of Spam 125
The Problem of Spam 126
Open Relays 127
Spam Detection 127
Anti-Spam Actions 129
Postfix Configuration 130
Client-Detection Rules 131
Strict Syntax Parameters 143
Content-Checking 144
Customized Restriction Classes 147
Postfix Anti-Spam Example 149

12. SASL Authentication . 151
SASL Overview 152
Postfix and SASL 154
Configuring Postfix for SASL 154
Testing Your Authentication Configuration 159
SMTP Client Authentication 162

13. Transport Layer Security . 164
Postfix and TLS 165
TLS Certificates 165

14. Content Filtering . 174
Command-Based Filtering 175
Daemon-Based Filtering 177
Other Considerations 181

15. External Databases . 183
MySQL 184
LDAP 190

viii | Table of Contents

A. Configuration Parameters . 195

B. Postfix Commands . 219

C. Compiling and Installing Postfix . 221

D. Frequently Asked Questions . 234

Index . 239

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

ix

Foreword

All programmers are optimists—these words of wisdom were written down almost
thirty years ago by Frederick P. Brooks, Jr.* The Postfix mail system is a fine example
of this. Postfix started as a half-year project while I was visiting the network and
security department at IBM Research in New York state. Although half a year was
enough time to replace the mail system on my own workstation, it was not nearly
enough to build a complete mail system for general use. Throughout the next year, a
lot of code was added while the software was tested by a closed group of experts.
And in the five years that followed the public release, Postfix more than doubled in
size and in the number of features. Meanwhile, active development continues.

One of the main goals of Postfix is wide adoption. Building Postfix was only the first
challenge on the way to that goal. The second challenge was to make the software
accessible. While expert users are happy to Read The Friendly Manual that accompa-
nies Postfix, most people need a more gentle approach. Truth be told, I would not
expect to see wide adoption of Postfix without a book to introduce the concepts
behind the system, and which gives examples of how to get common tasks done. I
was happy to leave the writing of this book to Kyle Dent.

Just like Postfix, I see this book as a work in progress. In the time that the first edi-
tion of the book was written, Postfix went through several major revisions. Some
changes were the result of discussions with Kyle in order to make Postfix easier to
understand, some changes added functionality that was missing from earlier ver-
sions, and some changes were forced upon Postfix by the big bad ugly world of junk
email and computer viruses. Besides the changes that introduced new or extended
features, many less-visible changes were made behind the scenes as part of ongoing
maintenance and improvement.

* Frederick P. Brooks, Jr.: The Mythical Man-Month: Essays on Software Engineering, Addison Wesley, 1975.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

x | Foreword

This book describes Postfix Version 2.1, and covers some of the differences with
older Postfix versions that were widely used at the time of publication. As Postfix
continues to evolve, it will slowly diverge from this book, and eventually this book
will have to be updated. While it is a pleasure for me to welcome you to this first
edition, I already look forward to an opportunity to meet again in the near future.

—Wietse Venema
Hawthorne, New York

September 19, 2003

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xi

Preface

I’m always astounded when I think about the early designers of Internet technolo-
gies. They were (and many still are) an amazing group of people who developed soft-
ware and technologies for a network that was minuscule, by comparison with
today’s Internet. Yet their work scaled and has continued to function in not only a
much larger but in a very different environment. The expansion hasn’t been com-
pletely without growing pains, but that doesn’t diminish this amazing feat. Sendmail
is an example of one of the early technologies that was written for a different uni-
verse, yet is still relevant and handles a large portion of email today.

Postfix has an advantage in that it was built with an awareness of the scope and hos-
tile environment it would have to face. In fact, its creation was motivated by the need
to overcome some of the problems of software written in a more innocent age. What
a difference a little hindsight can make.

I first started using Postfix when I was working with systems in a security-sensitive
environment. The promise of more flexibility and better security caught my interest
as soon as I heard about it. I was not disappointed. It didn’t take long before I was
hooked, and preferred using Postfix everywhere. This book is my attempt to create a
reference and a guide to understanding how Postfix works. Its main goal is to explain
the details and concepts behind Postfix. It also offers instructions for accomplishing
many specific tasks.

Documenting a piece of software that is still under active development is a bit like
trying to stop running water. Sadly, this book will be incomplete even before it is
out. I’ve tried to structure the information in the book in such a way as to exclude
things that might become irrelevant or quickly out-of-date, so that what you find in
the book will be good information for a long time to come. However, you may have
to supplement this book with online documentation, web sites, and the Postfix mail-
ing list for coverage of the latest features.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xii | Preface

Audience
Postfix is a network application written for Unix. The more you know about net-
working and Unix, the better equipped you will be to manage a Postfix server. This
book tries to explain things in such a way as to be understandable to users new to
Unix, but it is unrealistic to think that you could learn to administer a Postfix server
without having (or at least acquiring) some Unix knowledge. The book focuses on
Postfix itself. Other concepts are explained as needed to understand the functions
and configuration of Postfix. If you’re new to Unix, you should certainly consult
other texts for general Unix information. Unix System Administration Handbook by
Evi Nemeth, et al. (Prentice-Hall) is an excellent choice, and includes a helpful sec-
tion on email. The relevant RFCs mentioned in this book can also be very helpful for
understanding the details of a subject.

Organization
Chapters 1 through 3 provide background information on Postfix and email, chap-
ters 4 through 7 discuss general aspects of running a Postfix server, and Chapters 8
through 15 each present a specific topic that you may or may not need, depending
on how you use Postfix:

Chapter 1, Introduction
Introduces Postfix and some general email concepts. Also discusses some of the
design decisions that went into Postfix.

Chapter 2, Prerequisites
Covers required topics for understanding other concepts in the book. Anyone
with a basic understanding of Unix and email can safely skip this chapter.

Chapter 3, Postfix Architecture
Explains the pieces of the modular architecture of Postfix and how Postfix
handles email messages.

Chapter 4, General Configuration and Administration
Covers a wide range of topics for configuring and managing a Postfix server.

Chapter 5, Queue Management
Explains how the Postfix queue manager works, and presents the tools used to
work with the queue.

Chapter 6, Email and DNS
Discusses how DNS is used for email routing. Presents considerations for config-
uring DNS to work with Postfix.

Chapter 7, Local Delivery and POP/IMAP
Covers how Postfix makes local deliveries and how it operates in conjunction
with POP and IMAP servers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xiii

Chapter 8, Hosting Multiple Domains
Discusses using Postfix to receive email for virtual domains.

Chapter 9, Mail Relaying
Discusses operating Postfix as a mail relay or gateway system.

Chapter 10, Mailing Lists
Discusses setting up mailing lists in Postfix, and using Postfix with mailing-list
managers. Provides examples with Majordomo and Mailman.

Chapter 11, Blocking Unsolicited Bulk Email
Discusses Postfix controls for blocking unwanted mail messages.

Chapter 12, SASL Authentication
Covers using SASL libraries to provide SMTP authentication for clients to relay
messages through your Postfix server.

Chapter 13, Transport Layer Security
Covers using the TLS patch to provide encrypted communications between cli-
ents and your Postfix server.

Chapter 14, Content Filtering
Discusses setting up external content filters with Postfix.

Chapter 15, External Databases
Covers using external data sources for Postfix lookup tables.

Appendix A, Configuration Parameters
Presents an alphabetical listing of Postfix configuration parameters.

Appendix B, Postfix Commands
Presents a list, with brief explanations, of the command-line utilities that come
with Postfix.

Appendix C, Compiling and Installing Postfix
Discusses compiling and installing Postfix from source files.

Appendix D, Frequently Asked Questions
Presents a list of frequently asked questions about Postfix.

Conventions Used in This Book
Items appearing in this book are sometimes given a special appearance to set them
apart from the regular text. Here’s how they look:

Italic
Used for commands, email addresses, URIs, filenames, emphasized text, first ref-
erences to terms, and citations of books and articles.

Constant width
Used for literals, constant values, code listings, and XML markup.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

xiv | Preface

Constant width italic
Used for replaceable parameter and variable names.

Constant width bold
Used to highlight the portion of a code listing being discussed.

These icons signify a tip, suggestion, or general note.

These icons indicate a warning or caution.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

O’Reilly maintains a web page for this book, that lists errata, examples, and any
additional information. You can access this page at:

http://www.oreilly.com/catalog/postfix/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about O’Reilly books, conferences, Resource Centers, and the
O’Reilly Network, see O’Reilly’s web site at:

http://www.oreilly.com/

Acknowledgments
I would first like to thank Wietse Venema for Postfix, of course, but also for his
many contributions to the Internet community. Having had the honor to work with
him on this book, it is apparent to me that he brings the same level of intelligence
and attention to detail to all of his endeavors. This book has benefited greatly from
his considerable input.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Preface | xv

I have always admired O’Reilly & Associates as a company. After having had the
experience of working with them, my admiration has not diminished in the least. My
editor, Andy Oram, excellently personifies the goals of the company. I’ve enjoyed
discussions with him, and his comments were always very helpful. I appreciate his
enormous patience. Lenny Muellner helped me get going with text-processing tools
and I’d like to thank David Chu for his timely assistance when needed. I would also
like to thank Robert Romano for turning my crude diagrams into the professional
figures you find in the book, and Reg Aubry for guiding the book through the pro-
duction process.

Several technical reviewers assisted me not only in staying honest and correct in the
details, but they also often offered useful stylistic suggestions. Thanks to Rob Dinoff,
Viktor Dukhovni (a.k.a. Victor Duchovni), Lutz Jänicke, and Alan Schwartz. I wish I
had such a team looking over my shoulder for everything I do.

I would also like to acknowledge the many members of the postfix-users@postfix.org
list. It is an active list with a low noise-to-signal ratio, populated by a group of
remarkably capable and helpful people. Its members not only help the user commu-
nity, but have contributed through their comments and discussions to the evolution
of Postfix itself.

Finally, I owe a large debt of gratitude to my wife and first editor, Jackie. She sub-
jected my initial drafts to scrupulous tests for lucidity and sanity (shocking how
often they failed). This book is much improved from her patient and valuable input.
She is an all-around good egg who remained cheerful even when faced with reading
and rereading several rewrites.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

1

Chapter 1 CHAPTER 1

Introduction

Internet email history goes back as far as the early 1970s, when the first messages
were sent across the Arpanet, the predecessor of today’s Internet. Since that time,
email has been, and continues to be, the most widely used application on the Inter-
net. In the olden days, email delivery was relatively simple, and generally consisted of
moving mail files from one large host to another large host that served many users.
As the Internet evolved and the network itself became more complex, more flexible
tools were needed to move mail between different networks and different types of
networks. The Sendmail package, released in the early 1980s, was designed to deal
with the many variations among mail systems. It quickly assumed a dominant role
for mail delivery on the Internet.

Today, most Internet sites use the SMTP mail protocol to deliver and receive mail
messages. Sendmail is still one of the most widely deployed SMTP servers, but there
have been problems with it. Sendmail’s monolithic architecture has been the pri-
mary cause of numerous security issues, and it can be difficult to configure and
maintain.

Postfix was originally conceived as a replacement for the pervasive Sendmail. Its
design eliminates many opportunities for security problems. Postfix also eliminates
much of the complexity that comes with managing a Sendmail installation. Postfix
administration is managed with two straightforward configuration files, and Postfix
has been designed from the beginning to handle unexpected hardware or software
problems gracefully.

Postfix Origins and Philosophy
Postfix was written by Wietse Venema, who is widely known for his security tools
and papers. It was made available as open source software in December 1998. IBM
Research sponsored the initial release and has continued to support its ongoing
development. (IBM calls the package Secure Mailer.) There were certain goals from
the beginning that drove the design and development of Postfix:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Introduction

Reliability
Postfix shows its real value when operating under stressful conditions. Even
within simple environments, software can encounter unexpected conditions. For
example, many software systems behave unpredictably when they run out of
memory or disk space. Postfix detects such conditions, and rather than make the
problem worse, gives the system a chance to recover. Regardless of hazards
thrown its way, Postfix takes every precaution to function in a stable and reli-
able way.

Security
Postfix assumes it is running in a hostile environment. It employs multiple lay-
ers of defense to protect against attackers. The security concept of least privilege
is employed throughout the Postfix system, so that each process, which can be
run within an isolated compartment, runs with the lowest set of privileges it
needs. Processes running with higher privileges never trust the unprivileged pro-
cesses. Likewise, unneeded modules can be disabled, enhancing security and
simplifying an installation.

Performance
Postfix was written with performance in mind and, in fact, takes steps to ensure
that its speed doesn’t overwhelm other systems. It uses techniques to limit both
the number of new processes that have to be created and the number of filesystem
accesses required in processing messages.

Flexibility
The Postfix system is actually made up of several different programs and sub-
systems. This approach allows for great flexibility. All of the pieces are easily
tunable through straightforward configuration files.

Ease-of-use
Postfix is one of the easier email packages to set up and administer, as it uses
straightforward configuration files and simple lookup tables for address transla-
tions and forwarding. The idea behind Postfix’s configuration is the notion of
least surprise, which means that, to the extent it’s possible, Postfix behaves the
way most people expect. When faced with design choices, Dr. Venema has
opted for the decision that seems most reasonable to most humans.

Compatibility with Sendmail
With Sendmail compatibility, Postfix can easily replace Sendmail on a system
without forcing any changes on users or breaking any of the applications that
depend on it. Postfix supports Sendmail conventions like /etc/aliases and .forward
files. The Sendmail executable program, sendmail, is replaced with a Postfix ver-
sion that supports nearly all of the same command-line arguments but runs in
conjunction with the Postfix system. While your Sendmail-dependent programs
continue to work, Postfix has been evolving independently of Sendmail, and
doesn’t necessarily implement all email features in the same way.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Email and the Internet | 3

Email and the Internet
Unlike most proprietary email solutions, where a single software package does every-
thing, Internet email is built from several standards and protocols that define how
messages are composed and transferred from a sender to a recipient. There are many
different pieces of software involved, each one handling a different step in message
delivery. Postfix handles only a portion of the whole process. Most email users are
only familiar with the software they use for reading and composing messages, known
as a mail user agent (MUA). Examples of some common MUAs include mutt, elm,
Pine, Netscape Communicator, and Outlook Express. MUAs are good for reading
and composing email messages, but they don’t do much for mail delivery. That’s
where Postfix fits in.

Email Components
When you tell your MUA to send a message, it simply hands off the message to a
mail server running a mail transfer agent (MTA). Figure 1-1 shows the components
involved in a simple email transmission from sender to recipient. MTAs (like Post-
fix) do the bulk of the work in getting a message delivered from one system to
another. When it receives a request to accept an email message, the MTA deter-
mines if it should take the message or not. An MTA generally accepts messages for
its own local users; for other systems it knows how to forward to; or for messages
from users, systems, or networks that are allowed to relay mail to other destinations.
Once the MTA accepts a message, it has to decide what to do with it next. It might
deliver the message to a user on its system, or it might have to pass the message
along to another MTA. Messages bound for other networks will likely pass through
many systems. If the MTA cannot deliver the message or pass it along, it bounces the
message back to the original sender or notifies a system administrator. MTA servers
are usually managed by Internet Service Providers (ISPs) for individuals or by corpo-
rate Information Systems departments for company employees.

Figure 1-1. Simple Internet message flow

MUA

MTA

MDA

MTA

Message
store

POP/IMAP
server MUA

Sender

Recipient

SMTP

SMTP POP
IMAP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Introduction

Ultimately, a message arrives at the MTA that is the final destination. If the message
is destined for a user on the system, the MTA passes it to a message delivery agent
(MDA) for the final delivery. The MDA might store the message as a plain file or pass
it along to a specialized database for email. The term message store applies to persis-
tent message storage regardless of how or where it is kept.

Once the message has been placed in the message store, it stays there until the
intended recipient is ready to pick it up. The recipient uses an MUA to retrieve the
message and read it. The MUA contacts the server that provides access to the mes-
sage store. This server is separate from the MTA that delivered the message and is
designed specifically to provide access for retrieving messages. After the server suc-
cessfully authenticates the requester, it can transfer that user’s messages to her MUA.

Because Internet email standards are open, there are many different software pack-
ages available to handle Internet email. Different packages that implement the same
protocols can interoperate regardless of who wrote them or the type of system they
are running on. If you are putting together a complete email system, most likely the
software that handles SMTP will be a different package than the software that han-
dles POP/IMAP, and there are many different software choices for each aspect of
your complete email system.

Major Email Protocols
The communications that occur between each of these email system components are
defined by standards and protocols. The standards documents are maintained by the
Internet Engineering Task Force (IETF) and are published as Request For Com-
ments (RFC) documents, which are numbered documents that explain a particular
technology or protocol.

The Simple Mail Transport Protocol (SMTP) is used for sending messages, and either
the Post Office Protocol (POP) or Internet Mail Application Protocol (IMAP) is used
for retrieving messages. SMTP, defined in RFC 2821, describes the conversation that
takes place between two hosts across a network to exchange email messages. The
IMAP (RFC 2060) and POP (RFC 1939) protocols describe how to retrieve messages
from a message store. The IMAP protocol was developed after POP and offers addi-
tional features. In both protocols, email messages are kept on a central server for
message recipients who generally retrieve them across a network.

Note that the MUA does not necessarily use the same system for POP/IMAP as it
does for SMTP, which is why email clients have to be configured separately for
POP/IMAP and SMTP. An ISP might provide separate servers for each function to
their customers, and corporate users who are away from the office often retrieve
their messages from the company POP/IMAP server, but use the SMTP server of a
dial-up ISP to send messages. MTA software running on SMTP servers constantly
listens for requests to accept messages for delivery. Requests might come from
MUAs or other MTA servers.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

The Role of Postfix | 5

SMTP and email submission

SMTP is commonly used for email submission and for transmissions of email mes-
sages between MTAs. When an MUA contacts an MTA to have a message delivered,
it uses SMTP. SMTP is also used when one MTA contacts another MTA to relay or
deliver a message. Originally, SMTP had no means to authenticate users, but exten-
sions to the protocol provide the capability, if required. See Chapter 7 for more infor-
mation on authenticating SMTP users.

POP/IMAP and mailbox access

When users want to retrieve their messages, they use their MUA to connect to a POP
or IMAP server to retrieve them. POP users generally take all their messages from the
server and manage their mail locally. IMAP provides features that make it easier to
manage mail on the server itself. (See Chapter 12 for more information on using
Postfix with POP and IMAP servers.) Many servers now offer both protocols, so I
will refer to them as POP/IMAP servers. POP and IMAP have nothing to do with
sending email. These protocols deal only with how users retrieve previously deliv-
ered and stored messages.

Not all users need POP/IMAP access to the message store. Users with shell access on
a Unix machine, for example, might have their MUA configured to read their email
messages directly from the mail file that resides on the same machine.

The Role of Postfix
Postfix is an MTA and handles the delivery of messages between servers and locally
within a system. It does not handle any POP or IMAP communications.

Figure 1-2 illustrates a simple example of message transmission where Postfix handles
the responsibilities of the MTA and local delivery. As the MTA, Postfix receives and
delivers email messages over the network via the SMTP protocol. For local delivery,
the Postfix local delivery agent can deposit messages directly to a message store or
hand off a message to a specialized mail delivery agent.

This example shows Postfix as the SMTP server at both ends of the email transac-
tion; however, since Postfix is based on Internet standards, the other email server in
this example could easily be any other standards-compliant server. Postfix can com-
municate with any other server that speaks SMTP (and even some that are not quite
fluent). In our example, Heloise wants to send a message to Abelard from her
address (heloise@oreilly.com) to his address (abelard@postfix.org.) Heloise uses her
email client to compose her message, which passes it to her MTA (using SMTP). As
it happens, her MTA is a Postfix server that allows her to relay messages. After
accepting the message from Heloise’s email client, the Postfix server determines
where Heloise’s message needs to go, based on Abelard’s email address. Using DNS
(see Chapter 6 for more information on DNS and email) it figures out which SMTP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Introduction

server should accept messages for Abelard’s domain (postfix.org) and contacts that
server (using SMTP). Abelard’s Postfix server accepts the message and stores it until
Abelard is ready to pick it up. At this point Postfix’s job is done. When Abelard is
ready to retrieve his messages, his email client, using POP or IMAP, picks up
Heloise’s message.

This example leaves out the details of the complicated tasks involved when Postfix
delivers mail. In the case of messages with multiple recipients, Postfix has to figure
out where to deliver copies for each recipient. In case one or more recipients cannot
receive mail due to a networking or systems problem, Postfix has to queue the mes-
sage and retry delivery periodically. From a user’s point of view, the Postfix piece of
the operation is nearly invisible. From the Internet mail system’s point of view, Post-
fix handles most aspects of email message delivery.

Postfix Security
Email systems are necessarily exposed to possible attacks because their function
requires that they accept data from untrusted systems. The challenge is to build sys-
tems that are resistant to attack, and any good security strategy includes multiple lay-
ers of protection. This is particularly true for public systems in a potentially hostile
environment. Postfix takes a proactive and multilayered approach to security. The
Postfix architecture limits the severity of vulnerabilities, even if there are design or
coding errors that might otherwise create major vulnerabilities in a monolithic privi-
leged program.

Figure 1-2. Example network email message delivery

Sender PC

Heloise

DNS server

Email server

Postfix

Email server

POP/IMAPPostfix
Internet

Message
store

Recipient PC

Abelard

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Security | 7

Modular Design
The modular architecture of Postfix forms the basis for much of its security. Each
Postfix process runs with the least amount of privilege necessary to get its particular
job done. Many of Sendmail’s security problems were exacerbated because Sendmail
ran as a privileged process most of the time. Postfix operates with the minimum priv-
ilege necessary to accomplish a particular task. Postfix processes that are not needed
on a system can be turned off, making it impossible to exploit them. For example, a
network firewall system that only relays mail and does not need local delivery can
have all the Postfix components for local delivery turned off. Postfix processes are
insulated from each other and depend very little on any interprocess communica-
tion. Each process determines for itself what it needs to know.

Shells and Processes
In most cases, the delivery of mail does not require a Unix shell process, but when a
configuration does make use of one, Postfix sanitizes information before placing it
into environment variables. Postfix tries to eliminate any harmful characters that
might have special meaning to a shell before making any data available to the shell.

Most Postfix processes are executed by a trusted master daemon. They do not run as
user child processes, so they are immune to any of the security problems that rely on
parent-child inheritance and communications. These attacks that use signals, shared
memory, open files, and other types of interprocess communication are essentially
useless against Postfix.

Security by Design
A buffer overflow is another common type of attack against applications. In this type
of attack, crackers cause a program to write to memory where it is not supposed to.
Doing so might allow them to change the path of execution in order to take control
of the process. I’ve already mentioned that Postfix processes run with as little privi-
lege as possible, so such an attack would not get very far; moreover, Postfix avoids
using fixed-size buffers for dynamic data, making a successful buffer overflow attack
highly unlikely.

An important security protection available on Unix systems is the ability to chroot
applications. A chroot establishes a new root directory for a running application such
as /var/spool/postfix. When that program runs, its view of the filesystem is limited
to the subtree below /var/spool/postfix, and it cannot see anything else above that
point. Your critical system directories and any other programs that might be
exploited during an attack are not accessible. Postfix makes it very simple to cause its
processes to run within a chroot (see more about chrooting in Chapter 4). By doing

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Introduction

so, you cause Postfix to run in its own separate compartment. Even if Postfix is
somehow subverted, it will not provide access to many of the methods an attacker
typically employs to compromise a system.

Because Postfix is designed to run even under stressful conditions, denial-of-service
(DOS) attacks are much less effective. If a system runs out of disk space or memory
due to a DOS attack or another type of problem, Postfix is careful not to make the
situation worse. It backs off from what it is trying to do to allow the system to
recover. Postfix processes are configured to use a limited amount of memory, so they
do not grow uncontrollably from an onslaught of messages.

The difficulty in planning for security is that you don’t know what the next attack
will be or how it will be carried out. Postfix is designed to deal with adverse condi-
tions no matter what their cause. Its built-in robustness is a major factor in the
degree of security that Postfix provides. Indeed, Dr. Venema has said that he is not
so much interested in security as he is in creating software that works as intended,
regardless of the circumstances. Security is just a beneficial side effect.

Additional Information and How to Obtain
Postfix
You can get more information about Postfix at the official web site: The Postfix
Home Page (http://www.postfix.org/). The site contains the source code, documenta-
tion, links to add-on software, articles, and additional information about Postfix.
There is also information about joining an active mailing list that discusses all
aspects of Postfix.

If you don’t have a copy of Postfix already, you can obtain the source code from the
Postfix web site. It is, however, quite possible that there is a precompiled package for
your platform that may be more convenient for you. If that is the case, you can
obtain the Postfix package for your operating system and use your system’s normal
tools for software installation and configuration. You should check the normal
repositories you use to get software for your system.

There are many good reasons to build Postfix for yourself: there may not be a pre-
packaged bundle for your platform, you might not trust the packager of the bundle
to have done everything correctly for your environment, you might need support for
add-ons that are not built into a package, you might need a more current version
than is available in packages, or you might just enjoy the task. If you have any experi-
ence compiling software, you’ll have no trouble building Postfix. It’s one of the eas-
ier open source packages to compile.

The Postfix web site has a download link that displays a list of mirrors from which
you can get the software. You should select the mirror that is closest to you. Postfix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Additional Information and How to Obtain Postfix | 9

is available as either an Official Release package or as an Experimental Release pack-
age. Even though it’s called experimental, you should consider the code to be very
stable. Experimental releases contain new features that might still change before they
become official. Some new features are available only in an experimental release, but
you should feel comfortable using them. Just be aware that they may evolve slightly
in later releases until their feature sets are considered stable enough for the official
release. No Postfix software is released that hasn’t gone through extensive testing
and review. Read through the RELEASE_NOTES file that comes with the package to
learn what the differences are between the current official and experimental releases.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

10

Chapter 2CHAPTER 2

Prerequisites

This chapter presents some basic Unix and email concepts that you need in order to
follow explanations and examples presented later in the book. If you are already
familiar with email administration, you can safely skip the material here and move
on to the next chapter. This chapter does not give a systematic or comprehensive
overview of either email or Unix administration. There is already an enormous
amount of information available on both topics. This chapter simply presents an
assortment of items that are referred to later in the book, with the expectation that
readers already understand them.

Unix Topics
There’s no question that the more familiar you are with Unix, the better a Postfix
administrator you’ll be. Postfix is very much a Unix program working in conjunc-
tion with the underlying operating system for many of its functions. If you’re new to
Unix, you should study an introductory text. In the meantime, this section presents
some fundamental concepts that you will need to understand to follow explanations
in the book.

Login Names and UID Numbers
The list of recognized users on a system is stored in the /etc/passwd file. Every user
should have a unique login name and user ID number (commonly written as uid or
UID). The UID, not the user’s login name, is the important attribute for identity and
ownership checks. The login name is a convenience for humans, and the system uses
it primarily to determine what the UID is. Some Postfix configuration parameters
require UIDs rather than login names when referring to user accounts. Postfix some-
times takes on the identify of different users. A process is said to be using the rights
or privileges of that account when assuming its identity.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Unix Topics | 11

Pseudo-Accounts
A pseudo-account is a normal Unix system account except that it does not permit
logins. These accounts are used to perform administrative functions or to run pro-
grams under specific user privileges. Your system most likely came installed with
several pseudo-accounts. Account names such as bin and daemon are common
ones. Generally, these accounts prevent logins by using an invalid password and
nonexistent home directories and login shells. For Postfix administration, you need
at least one pseudo-account for Postfix processes to run under. You may need addi-
tional ones for other functions, such as mailing-list programs and filters.

Standard Input/Standard Output
Nearly all processes on a Unix system have a standard input stream and a standard
output stream when they start. They read data on their standard input and write data
on their standard output. Normally, standard input is the keyboard and standard
output is the monitor, which is how users interact with running programs. Standard
input and output can be redirected so that programs can get input from, and send
output to, a file or another program. This is often how batch mode programs oper-
ate. For the purpose of email, you should be aware of standard input and output
because your mail system may have to interact with other programs over their stan-
dard inputs and outputs. A mail filter program, for example, might accept the con-
tents of an email message on its standard input and send the revised contents to its
standard output. Programs usually also have a standard error stream that, like stan-
dard output, is normally a user’s monitor, but it can also be redirected. Standard
input/output/error are often written as stdin, stdout, and stderr. For more informa-
tion, consult an introductory book on Unix.

The Superuser
The administrative login on Unix systems is the root account. It is also referred to as
the superuser account, and you should treat it carefully. You should log in as the root
user only when its privileges are required to accomplish a particular task. Adminis-
tering Postfix sometimes requires root privileges. If you do not have superuser access
on your system, you cannot administer Postfix.

Command Prompts
When working with an interactive shell, you are normally greeted with a command
prompt that indicates the system is ready for you to enter a command. By conven-
tion, user command prompts are shown as either the $ character or the % character,
while the root prompt is presented as the # character. You should use the root
account only when it is necessary. In examples in this book, a normal user prompt is
shown as $, and that for root is shown as #. If the example shows the prompt as #,
you know that you must execute the command as root.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 2: Prerequisites

Long Lines
It is common usage in Unix to break long commands into multiple lines with a back-
slash (\) at the end of the line, which indicates that two or more lines continue as if
they were a single line. The continuation backslash can be used at a command
prompt and in shell scripts, and it is commonly used in configuration files (but not in
Postfix configuration files—see Chapter 4). In this book, lines that don’t fit on the
page are continued with backslashes. If you follow the examples, you can type lines
exactly as shown with the backslashes, or simply combine the continued lines into a
single one.

ManPages
Documentation for Unix systems is kept in an online manual known as manpages.
You can read the documentation for a particular item by issuing the man command
with the item as its argument. For example, to read about the mailq command, sim-
ply type:

$ man mailq

A description of the command is presented on your screen, one page at a time. Press
the spacebar to continue scrolling through the information.

Manpages have a standard organization showing the syntax of the command, all
options, and descriptions of behavior and other context. Some users find manpages
daunting, but you’ll do yourself a great service by getting comfortable with
manpages. All Unix and Postfix commands as well as many other features are docu-
mented in manpages. See an introductory Unix text or your system documentation
to learn more about manpages.

Email Topics
Internet email is a complex subject with many aspects. There are important princi-
ples that apply when administering an email system regardless of the MTA you are
working with. This section presents a few concepts that will help in understanding
later explanations in the book, but you are urged to learn as much about Internet
email as possible from the many resources available in books and online.

RFCs
RFCs, or Request for Comments documents, define the standards for the Internet.
There are several RFCs relating to Internet email, all of which are relevant to you if
you are administering an email system on the Internet. The two most commonly ref-
erenced RFCs for email are RFC 821 and RFC 822, which deal with how email mes-
sages are transferred between systems, and how email messages should appear.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Email Topics | 13

These documents were put into effect more than 20 years ago. They were updated in
April 2001 with the proposed standards RFC 2821 and RFC 2822, although you will
still see many references to the original documents. RFC documents are maintained
by the Internet Engineering Task Force, whose site is available at http://www.ietf.org/.

Email Agents
Chapter 1 introduced several of the email agents involved in message composition to
final delivery. For convenience, Table 2-1 contains a summary of these agents.

The Postmaster
An email administrator is commonly referred to as a postmaster. An individual with
postmaster responsibilities makes sure that the mail system is working correctly,
makes configuration changes, and adds/removes email accounts, among other
things. You must have a postmaster alias at all domains for which you handle email
that directs messages to the correct person or persons. RFC 2142 specifies that a
postmaster address is required.

Reject or Bounce
If a receiving MTA determines during the SMTP conversation (see “The SMTP Pro-
tocol” later in the chapter) that it will not accept the message, it rejects the message.
At that point the sending system should generate an error report to deliver to the
original sender. Sometimes the MTA accepts a message and later discovers that it
cannot be delivered—perhaps the intended recipient doesn’t exist or there is a prob-
lem in the final delivery. In this case, the MTA that has accepted the message bounces
it back to the original sender by sending an error report, usually including the reason
the original message could not be delivered.

The MTA that accepts a message takes responsibility for the message until it is deliv-
ered or handed off to another MTA. When a system is responsible for a message and
cannot deliver or relay it, the responsible system informs the sender that the mail is
undeliverable.

Table 2-1. Email agents

Agent Name Purpose

MUA Mail User Agent Email client software used to compose, send, and retrieve email messages.
Sends messages through an MTA. Retrieves messages from a mail store either
directly or through a POP/IMAP server.

MTA Mail Transfer Agent Server that receives and delivers email. Determines message routing and pos-
sible address rewriting. Locally delivered messages are handed off to an MDA
for final delivery.

MDA Mail Delivery Agent Program that handles final delivery of messages for a system’s local recipients.
MDAs can often filter or categorize messages upon delivery. An MDA might
also determine that a message must be forwarded to another email address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 2: Prerequisites

Envelope Addresses and Message Headers
A common source of confusion for email users is the fact that the To: address in
email message headers has nothing to do with where a message is actually delivered.
The envelope address controls message delivery. In practice, when you compose a
message and provide your MUA with a To: address, your MUA uses that same
address as the envelope destination address, but this is not required nor is it always
the case. From the MTA’s point of view, message headers are part of the content of
an email message. The delivery of a message is determined by the addresses specified
during the SMTP conversation. These addresses are the envelope addresses, and they
are the only thing that determine where messages go. See “The SMTP Protocol” later
in the chapter for an explanation of the SMTP protocol.

Mailing lists and spam are common examples of when the envelope destination
address differs from the To: address of the message headers. For more information,
see RFC 2821 and RFC 2822. Also see “Email Message Format” later in the chapter
for more information about the format of email messages. If you follow the SMTP
session in Example 2-2, try substituting any address you want in the To: field of the
message contents to see that it has no effect on where the message is delivered.

Local Parts of Email Addresses
RFC 2822 describes the format of email addresses in great detail. It specifies how
things such as quoting and comments should work in email addresses. If we ignore
the more obscure details, a simple email address is generally composed of three
parts: the local part (which is usually a username), the @ separator, and the domain
name. The local part might also be an alias to another address or to a mailing list.
The local part is sometimes referred to as the lefthand side (LHS), and the domain is
sometimes called the righthand side (RHS). For more information, see RFC 2822.

Email Message Format
Since RFC 822 was the document that originally described how Internet email mes-
sages should be formatted, messages are commonly referred to as “in the RFC 822
format” or as an “RFC 822 message.” You should understand the basics of the for-
mat since it is referred to in this book and you will likely see it elsewhere. I’ll use the
newer proposed standard and refer to “RFC 2822 messages.”

RFC 2822 messages

RFC 2822 specifies the format of both email messages and email addresses as they
appear in message headers (but not envelope addresses). The specification describes
the format for transmission, but many implementations use the same or a similar for-
mat to store messages. A message is comprised of two parts: the header and the body.
The header contains specific fields with names such as To, From, or Subject fol-
lowed by a colon (:). After the colon comes the contents of the field. One message

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Email Topics | 15

header field can span multiple lines. Lines that continue a field start with whitespace
characters (space or tab characters) to show that they are continuations of the previ-
ous line.

The standard document provides a lot of detail about the header fields and what they
should be used for. There are rules about how fields relate to each other and when
one or another must be used, but in the simplest case, the only required fields are the
Date: and the From: fields. The standard also provides for customized fields that a
particular email implementation might want to create for its own use.

The header fields are separated from the message body by an empty line. The body
of a message contains the contents of the message itself. The body is purposely free-
form, but should contain only ASCII characters. Some defined headers have a pre-
scribed structure that is more restricted than the body. Binary files, such as images or
executables, must be converted in some way to ASCII characters, so they can be sent
in compliance with the standard. Other standards such as MIME encoding or tradi-
tional uuencoding deal with converting such files for mailing. Example 2-1 shows a
typical message with headers and body.

The fields in the example are mostly self-explanatory. The Received: header is not
required by RFC 2822, but every MTA that handles a message normally prepends a
Received: header to the message, as discussed in RFC 2821, which is described in the
following section.

The SMTP Protocol
The SMTP protocol is defined in RFC 2821. The protocol is actually quite simple to
follow, and was designed to be easily comprehensible both to humans and comput-
ers. A client connects to an SMTP server, whereupon the server begins the SMTP
conversation, which consists of a series of simple commands and replies, including

Example 2-1. Email message format

Return-Path: <info@oreilly.com>
Delivered-To: kdent@mail.example.com
Received: from mail.oreilly.com (mail.oreilly.com [192.168.145.34])
 by mail.example.com (Postfix) with SMTP id 5FA26B3DFE
 for <kdent@example.com>;
 Mon, 8 Apr 2003 16:40:29 -0400 (EDT)
Date: Mon, 8 Apr 2003 15:38:21 -0500
From: Customer Service <info@oreilly.com>
To: <kdent@example.com>
Reply-To: <info@oreilly.com>
Message-ID: <01a4e2238200842@mail.oreilly.com>
Subject: Have you read RFC 2822?

This is the start of the body of the message. It could continue
for many lines, but it doesn't.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 2: Prerequisites

the transmission of the email message. The best way to understand the protocol is to
see it in action. You can easily try it yourself once you have your mail server set up.
Using a Telnet client, you can pose as a delivering MTA. Example 2-2 shows the
steps and the basic commands to deliver a message.

The SMTP session depicted in Example 2-2 is actually the delivery that produced the
sample message in Example 2-1. To follow the example yourself, start by using a
Telnet client to connect to the mail server on port 25 at mail.example.com. You
should connect to your own Postfix server and type in your own email addresses for
the envelope addresses. Port 25 is the well-known port for SMTP servers. After the
Telnet messages:

Trying 10.232.45.151
Connected to localhost.
Escape character is '^]'.

the server greets you with its banner:

220 mail.example.com ESMTP Postfix

Example 2-2. Email message delivery

$ telnet mail.example.com 25
Trying 10.232.45.151
Connected to mail.example.com.
Escape character is '^]'.
220 mail.example.com ESMTP Postfix
HELO mail.oreilly.com
250 mail.oreilly.com
MAIL FROM:<info@oreilly.com>
250 Ok
RCPT TO:<kdent@example.com>
250 Ok
DATA
354 End data with <CR><LF>.<CR><LF>

Date: Mon, 8 Apr 2003 15:38:21 -0500
From: Customer Service <info@oreilly.com>
To: <kdent@example.com>
Reply-To: <service@oreilly.com>
Message-ID: <01a4e2238200842@mail.oreilly.com>
Subject: Have you read RFC 2822?

This is the start of the body of the message. It could continue
for many lines, but it doesn't.
.

250 Ok: queued as 5FA26B3DFE
quit
221 Bye
Connection closed by foreign host.
$

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Email Topics | 17

SMTP server replies, such as the greeting message, always start with a three-digit
response code, usually followed by a short message for human consumption.
Table 2-2 provides the reply code levels and their meanings. The first digit of the
response code is enough to know the status of the requested command. In documen-
tation the response codes are often written as 2xx to indicate a level 200 reply.

After receiving the welcome banner, introduce yourself with the HELO command.
The hostname after the HELO command should be the name of the system you’re
connecting from:

HELO mail.oreilly.com

The server replies with a success. So you may continue:

250 mail.oreilly.com

Indicate who the message is from with the MAIL FROM command:

MAIL FROM:<info@oreilly.com>

The server accepts the sending address:

250 Ok

Indicate who the message is to with the RCPT TO command:

RCPT TO:<kdent@example.com>

The server accepts the recipient address:

250 Ok

Now you are ready to send the content of the message. The DATA command tells the
server that you have an RFC 2822 message ready to transfer:

DATA

The server replies that it accepts the command and is expecting you to begin send-
ing data:

354 End data with <CR><LF>.<CR><LF>

Table 2-2. SMTP response codes

Code level Status

2xx The requested action was successful. The client may continue to the next step.

3xx Command was accepted, but the server expects additional information. The client should send another com-
mand with the additional information.

4xx The command was not successful, but the problem is temporary. The client should retry the action at a later
time.

5xx The command was not successful, and the problem is considered permanent. The client should not retry the
action.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 2: Prerequisites

At this point, you can transfer the entire contents of your message. The contents of
messages start with the message headers. When the message itself is finished, indi-
cate the end by sending a single period on a line by itself.

The server acknowledges the end of your message and replies that the transfer was
successfully completed:

250 Ok: queued as 5FA26B3DFE

At this point the server has taken responsibility for the message. If you wanted to
continue with more commands, you could do so now. Since you have no other mes-
sages to deliver to this server, you can start to disconnect with the quit command:

quit

The server replies with a success and disconnects:

221 Bye

Finally, the Telnet client tells you that the connection has ended returns to the
command prompt:

Connection closed by foreign host.
$

This was, of course, the simplest example of an SMTP transaction. The basic proto-
col provides additional commands and has been extended to allow for many
enhancements. RFC 1869 provides a framework for adding additional features to the
basic SMTP protocol. The enhanced protocol is referred to as ESMTP. A client indi-
cates its willingness to use the enhanced protocol by beginning with the EHLO com-
mand instead of HELO. If the server also supports enhancements, it replies with a list
of the features it provides.

Many enhancements have been specified in various RFCs. You can learn about them
by searching for SMTP information on the IETF web site (http://www.ietf.org/).
There are many other resources available on the Web regarding the SMTP and
ESMTP protocols.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

19

Chapter 3 CHAPTER 3

Postfix Architecture

You can easily manage and operate Postfix without understanding everything about
how it works. If you’re ready to dive right in, you can skip this section and start at
the beginning of the next chapter. It might be difficult to digest all of the material
here if you don’t have much experience with Postfix yet, but this chapter will give
you an overview of the various pieces, which might come in handy as you start to
work with Postfix. Later, after you have more experience with Postfix, you might
want to return to this chapter to try to absorb more of the details.

Postfix Components
The architecture of Postfix is quite different from that of a monolithic system such as
Sendmail, which traditionally uses a single large program for its handling of email
messages. Postfix breaks down tasks into separate functions using individual pro-
grams that each perform one specific task. Most of these programs are daemons,
which are processes that run in the background on your system. The master daemon
is started first, and it invokes most other processes, as needed. Postfix daemons that
are invoked by the master daemon process their assigned tasks and terminate. They
might also terminate after a configured amount of time or after handling a maxi-
mum number of requests. The master daemon is resident at all times, and gets its
configuration information at startup from both main.cf and master.cf. See Chapter 4
for more information on Postfix configuration files.

Figure 3-1 depicts a high-level picture of the Postfix architecture. Broadly speaking,
Postfix receives messages, queues them, and finally delivers them. Each stage of pro-
cessing is handled by a distinct set of Postfix components. After a message is received
and placed into the queue, the queue manager invokes the appropriate delivery agent
for the final disposition of the message. The next few sections in this chapter discuss
the details of each of the stages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 3: Postfix Architecture

How Messages Enter the Postfix System
Messages come into Postfix in one of four ways:

1. A message can be accepted into Postfix locally (sent from a user on the same
machine).

2. A message can be accepted into Postfix over the network.

3. A message that was already accepted into Postfix through one of the other meth-
ods is resubmitted for forwarding to another address.

4. Postfix generates messages itself when it has to send notifications of undeliver-
able or deferred delivery attempts.

There is always the possibility that a message is rejected before it enters the Postfix
system, or that some messages are deferred for later delivery.

Local Email Submission
The various Postfix components work together by writing messages to and reading
messages from the queue. The queue manager has the responsibility of managing
messages in the queue and alerting the correct component when it has a job to do.

Figure 3-2 illustrates the flow when a local email message enters the Postfix system.
Local messages are deposited into the maildrop directory of the Postfix queue by the
postdrop command, usually through the sendmail compatibility program. The pickup
daemon reads the message from the queue and feeds it to the cleanup daemon. Some
messages arrive without all of the required information for a valid email message. So
in addition to sanity checks on the message, the cleanup daemon, in conjunction
with the trivial-rewrite daemon inserts missing message headers, converts
addresses to the user@domain.tld format expected by other Postfix programs, and
possibly translates addresses based on the canonical or virtual lookup tables (see
Chapter 4 for more information on lookup tables).

The cleanup daemon processes all inbound mail and notifies the queue manager after
it has placed the cleaned-up message into the incoming queue. The queue manager
then invokes the appropriate delivery agent to send the message to its next hop or
ultimate destination.

Figure 3-1. Broad view of the Postfix architecture

Local submissions
Network submissions

Local forwarding
Notifications

In

Queue
manager

smtp, relay, lmtp,
local, virtual, pipe

Out

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

How Messages Enter the Postfix System | 21

Email from the Network
Figure 3-3 illustrates the flow when a network email message enters the Postfix sys-
tem. Messages received over the network are accepted by the Postfix smtpd daemon.
This daemon performs sanity checking and can be configured to allow clients to
relay mail on the system or deny them from doing so. The smtpd daemon passes the
message to the cleanup daemon, which performs its own checks then deposits the
message into the incoming queue. The queue manager then invokes the appropriate
delivery agent to send the message to its next hop or ultimate destination.

Figure 3-2. Local email submission

Figure 3-3. Email from the network

Postfix queue manager

postdrop

maildrop

pickup

incoming

cleanup

trivial-
rewrite

Postfix queue manager

smtpd

incoming

cleanup

trivial-
rewrite

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 3: Postfix Architecture

Postfix Email Notifications
When a user message is deferred or can’t be delivered, Postfix uses the defer or
bounce daemons to create a new error message. The error message is handed off to
the cleanup daemon. It performs its normal checks before depositing the error mes-
sage into the incoming queue, where it is picked up by the queue manager.

Email Forwarding
Sometimes, after processing an email message, Postfix determines that the destina-
tion address actually points to another address on another system. It could, at that
point, simply hand off the message to the SMTP client for immediate delivery, but to
make sure that every recipient is processed and logged correctly, Postfix resubmits it
as a new message where it is handled like any other locally submitted message.

The Postfix Queue
The Postfix queue manager does the bulk of the work in processing email. Postfix
components that accept mail have the ultimate goal of getting the email message to
the queue manager. This is done through the cleanup daemon, which notifies the
queue manager when it has placed a new message into the incoming mail queue.
Once the queue manager has a new message, it uses trivial-rewrite to determine
the routing information: the transport method to use, the next host for delivery, and
the recipient’s address.

The queue manager maintains four different queues: incoming, active, deferred, and
corrupt. After the initial cleanup steps, the incoming queue is the first stop for new
messages. Assuming system resources are available, the queue manager then moves
the message into the active queue, and calls on one of the delivery agents to deliver
it. Messages that cannot be delivered are moved into the deferred queue.

The queue manager also has the responsibility of working with the bounce and defer
daemons to generate delivery status reports for problem messages to be sent back to
the sender, or possibly the system administrator, or both. In addition to the message
queue directories, the Postfix spool directory contains bounce and defer directories.
These directories contain status information about why a particular message is
delayed or undeliverable. The bounce and defer daemons use the information stored
in these directories to generate their notifications. See Chapter 5 for more detailed
information on how the queue manager works.

Mail Delivery
Postfix uses the concept of address classes when determining which destinations to
accept for delivery and how the delivery takes place. The main address classes are
local, virtual alias, virtual mailbox, and relay. Destination addresses that do not fall

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mail Delivery | 23

into one of these classes are delivered over the network by the SMTP client (assum-
ing it was received by an authorized client). Depending on the address class, the
queue manager calls the appropriate delivery agent to handle the message.

Local Delivery
The local delivery agent handles mail for users with a shell account on the system
where Postfix is running. Domain names for local delivery are listed in the
mydestination parameter. Messages sent to a user at any of the mydestination
domains are delivered to the individual shell account for the user. In the simple case,
the local delivery agent deposits an email message into the local message store. It also
checks aliases and users’ .forward files to see if local messages should be delivered
elsewhere. See Chapter 7 for more information on local delivery.

When a message is to be forwarded elsewhere, it is resubmitted to Postfix for deliv-
ery to the new address. If there are temporary problems delivering the message, the
delivery agent notifies the queue manager to mark the message for a future delivery
attempt and store it in the deferred queue. Permanent problems cause the queue
manager to bounce the message back to the original sender.

Virtual Alias Messages
Virtual alias addresses are all forwarded to other addresses. Domain names for vir-
tual aliasing are listed in the virtual_alias_domains parameter. Every domain has its
own set of users that do not have to be unique across domains. Users and their real
addresses are listed in lookup tables specified in the virtual_alias_maps parameter.
Messages received for virtual alias addresses are resubmitted for delivery to the real
address. See Chapter 8 for more information on virtual aliases.

Virtual Mailbox Messages
The virtual delivery agent handles mail for virtual mailbox addresses. These mail-
boxes are not associated with particular shell accounts on the system. Domain names
for virtual mailboxes are listed in the virtual_mailbox_domains parameter. Every
domain has its own set of users that do not have to be unique across domains. Users
and their mailbox files are listed in lookup tables specified in the virtual_mailbox_
maps parameter. See Chapter 8 for more information on virtual mailboxes.

Relay Messages
The smtp delivery agent handles mail for relay domains. Email addresses in relay
domains are hosted on other systems, but Postfix accepts messages for the domains
and relays them to the correct system. Relay configurations are common when Post-
fix accepts mail over the Internet and passes it to systems on an internal network.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 3: Postfix Architecture

Domain names for relay domains are listed in the relay_domains parameter. See
Chapter 9 for more information on relaying.

Other Messages
Messages that do not fit into one of the address classes are generally destined for
other domains hosted elsewhere on the network. Postfix accepts such messages only
from authorized clients, such as systems that run on the same local network. When a
message has to be delivered across the network, the queue manager calls the smtp
delivery agent. The smtp agent determines which host or hosts can receive the mes-
sage and makes a connection to each in turn until it finds one to accept it. If there are
temporary problems delivering the message, the smtp delivery agent notifies the
queue manager to mark the message for a future delivery attempt and store it in the
deferred queue. Permanent problems cause the queue manager to bounce the mes-
sage back to the original sender.

When a destination system that has been unavailable comes back online, Postfix is
careful not to overwhelm it with all its pending messages. Whether delivering previ-
ously deferred messages or new messages, Postfix, at first, makes only a limited (con-
figurable) number of connections to a receiving system. After Postfix has detected
successful deliveries to a particular site, it slowly increases (up to a configurable
limit) simultaneous connections to it. If Postfix detects any trouble from the receiv-
ing site, it starts to back off deliveries immediately.

Other Delivery Agents
There are other Postfix delivery agents that can be configured to handle messages for
a particular class or destination. Other delivery agents must be configured in the
master.cf file. They are invoked either through the class_transport parameter or
through an entry in a transport table, listed in the transport_maps parameter. Two
common alternate delivery agents are the lmtp and pipe agents.

Delivery via LMTP

The LMTP protocol is similar to SMTP, but it is used for deliveries between mail sys-
tems on the same network. (See Chapter 7 for more information on LMTP.) For
example, if a message has to be delivered to a different software package, which
might be running on the same machine or another system on the local area network,
the queue manager calls the lmtp delivery agent. The most common example for
using LMTP is when a POP/IMAP server stores messages in a proprietary format.
(Recall that POP and IMAP are protocols for users to retrieve their messages.) The
POP/IMAP server, in this case, has its own proprietary format for storing messages,
so Postfix uses the LMTP standard to hand off the message to the POP/IMAP server.
If there are any problems delivering the message, the lmtp delivery agent notifies the
queue manager to mark the message for a future delivery attempt and store it in the
deferred queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Tracing a Message Through Postfix | 25

Pipe delivery

Postfix offers the option of delivering messages to another program through the pipe
daemon. The pipe daemon delivers messages to external commands. A common use
for the pipe daemon is to have email delivered to an external content filter or another
communications medium, such as a FAX machine. If there are any problems deliver-
ing the message, the pipe daemon notifies the queue manager to mark the message
for a future delivery attempt and store it in the deferred queue.

Tracing a Message Through Postfix
Let’s follow a typical message through the Postfix system. Figure 3-4, Figure 3-5, and
Figure 3-6 illustrate the process as the message goes from the originating system to a
destination MTA, which, in turn, forwards it to the final MTA, where it is held until
the user is ready to read it. In Figure 3-4, Helene (helene@oreilly.com) wants to send
a message to Frank (frank@postfix.org). Helene has an account on a system that runs
Postfix. Her email client lets her compose the message, and then it calls the Postfix
sendmail command to send it. The Postfix sendmail command receives the message
from Helene’s email software and deposits it into the maildrop directory. The pickup
daemon then retrieves the message, performs its sanity checks, and feeds the mes-
sage to the cleanup daemon, which performs the final processing on the new mes-
sage. If Helene’s email client did not include a From: address, or did not use a fully-
qualified hostname in the address, cleanup makes the necessary fixes to the message.

Once finished, cleanup places the message into the incoming queue and notifies the
queue manager that a new message is ready to be delivered. If the queue manager is
ready to process new messages, it moves the message into the active queue. Because
this message is destined for a user on an outside system, the queue manager has to
alert the smtp agent to handle the delivery of the message.

The smtp agent uses DNS (see Chapter 6) to get a list of email systems that can
accept mail for the domain postfix.org. The smtp delivery agent selects the most pre-
ferred MX host from the list and contacts it to deliver Helene’s message.

Figure 3-5 shows Frank’s email server at postfix.org also running Postfix, although
the system could be using any other standards-compliant MTA. The Postfix smtpd on
Frank’s server takes the message from Helene’s smtp delivery agent. After the smtpd
daemon verifies that it should, in fact, accept this message, it passes the message
through to the cleanup daemon, which performs its checks before depositing the
message into the incoming queue.

The queue manager moves the message to the active queue, performs its processing,
and determines that it should call on the local agent to make the final delivery of the
message. The local delivery agent finds that frank is an alias and resubmits the mes-
sage through the cleanup daemon for delivery to the new address.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 3: Postfix Architecture

Both cleanup and the queue manager call upon the trivial-rewrite daemon when
processing messages. trivial-rewrite helps with converting email addresses to a
standard format and determining the transport type and next hop for delivery.

When a new message has to be delivered to another network, the queue manager
calls on smtp, which checks the DNS for mail servers that can accept mail for the
domain onlamp.com. In Figure 3-6, the MTA at the onlamp.com system (once again

Figure 3-4. Tracing message delivery 1

Figure 3-5. Tracing message delivery 2

Queue manager

postdrop

maildrop

pickup

incoming

cleanup

trivial-
rewrite

Helene

active smtp

DNS server

oreilly.com

Queue manager

smtpd

incoming

cleanup

trivial-
rewrite

active localpostfix.org

aliases
frank ➝ doel@onlamp.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Tracing a Message Through Postfix | 27

by a happy coincidence, it’s a Postfix system) eventually hands the message to the
local delivery agent, which deposits it into the message store on that system. At this
point Postfix has finished its job. Frank can now read the message using his own
email client, which might pull it directly from the local message store or might use
another protocol, such as POP or IMAP, to get the message for him to read.

There are several variations that might have occurred in our simple example. Per-
haps the message could not be delivered at any step for some temporary reason, in
which case the delivery agent alerts the queue manager, which places the message
into the deferred queue and attempts another delivery at a later time. Another possi-
bility is that doel is not an actual account on the system but an account in an IMAP
email system. In this case, the queue manager might deliver the message through the
lmtp agent or via a specialized command configured through the pipe delivery agent.

There are many variations and potential complications for Postfix to deal with. For-
tunately, the architecture is robust enough to deal with nearly all situations, and flex-
ible enough to easily accommodate changes in the future.

Figure 3-6. Tracing message delivery 3

Queue manager

smtpd

incoming

cleanup

trivial-
rewrite

active localonlamp.com

Message
store

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

28

Chapter 4CHAPTER 4

General Configuration
and Administration

One of the truly remarkable things about Postfix is that, in many cases, it works as
soon as you install it, with little or no change to its configuration. In the first section
of this chapter, we’ll walk through checking the configuration and starting Postfix
for the first time. Later sections discuss Postfix configuration details.

By default, Postfix is configured as a traditional Unix mail server, sending and receiv-
ing messages for all the accounts on the system. Your users can send and receive
messages using any email client software available on your system.

In most environments, Postfix works in conjunction with a variety of other software
systems. You should build each piece of your email system and test each one as a
separate module before trying to integrate them all together. As you add each mod-
ule, test the system before moving on to the next piece.

At this point you should have Postfix installed on your system. You might install
Postfix from a packaged bundle for your platform or compile it yourself. See
Appendix C for help with compiling Postfix, if you’re building it yourself. Check
your normal software sources for any Postfix packages that might be available. If you
haven’t yet installed Postfix, either get a package for your system or follow the
instructions in Appendix C to build it. When you have finished with the installation,
come back to this chapter for the final configuration.

I will assume, in examples throughout the book, that your installation of Postfix uses
the default directories:

/etc/postfix
Configuration files and lookup tables

/usr/libexec/postfix
Postfix daemons

/var/spool/postfix
Queue files

/usr/sbin
Postfix commands

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Starting Postfix the First Time | 29

I will also assume that you or your installer created a postfix user and postdrop group.
This user and group should not be used for any other purpose on your system. If you
have changed any of the defaults, or if your Postfix package did, keep that in mind
when you read the examples presented in the book.

Starting Postfix the First Time
There are two important issues to deal with before starting Postfix for the first time.
The first is how your system identifies itself. Postfix uses a configuration parameter
called myhostname, which must be set to the fully qualified hostname of the system
Postfix is running on. Once Postfix knows the fully qualified hostname, it can use
that hostname to set default values for other important parameters, such as mydomain.
If the parameter myhostname is not set, Postfix defaults to the hostname reported by
the system itself. There is a complete discussion of myhostname later in the chapter.
You can see what name your system reports with the Unix hostname command:

$ hostname
mail.example.com

A fully qualified hostname is comprised of both the individual hostname and the
domain in which it resides. Some systems are configured with their simple host-
name, rather than its fully qualified version:

$ hostname
mail

If your system is configured with just its simple hostname, Postfix cannot determine
what the fully qualified name is. You must therefore explicitly set the myhostname
parameter. You can do this quite easily with the postconf Postfix command. The
postconf command is a Postfix utility that provides an easy way to get a variety of
information about your Postfix system. One of its functions is to display or change a
specific configuration parameter. You can use it to set the myhostname parameter:

postconf -e myhostname=mail.example.com

The -e option tells postconf to edit the configuration with the parameters and values
specified. If your system is configured with its fully qualified hostname, you don’t
have to do anything to the Postfix configuration.

The second important issue before starting Postfix for the first time is to make sure
that your system’s aliases database is in the correct format. There are certain required
aliases that you should configure when operating your mail server in a production
environment. We’ll discuss the aliases file later in this chapter. For now, be aware
that it is a text file that must be mapped into an indexed, binary format. Your exist-
ing aliases binary format might be different from what Postfix uses by default on
your system. You can rebuild the indexed file with the newaliases command:

newaliases

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 4: General Configuration and Administration

This command doesn’t require any arguments, and it simply recreates your alias
database without making any changes to your actual alias file.

Having accomplished these two critical items, you are now ready to start Postfix.
Execute the following command:

postfix start

If Postfix encounters any problems at start up, it reports them to your terminal. After
some initial setup, Postfix detaches from the terminal and can no longer report prob-
lems to the screen. It will, however, continue to send a lot of information to your sys-
tem log. Whenever you start or reload Postfix, be sure to check your system’s log to
make sure that there are no reported errors or warnings. See “Logging” later in this
chapter for information on Postfix logging and how to find the log file it uses.

Under most circumstances, Postfix will start without any problems, and you
should now be the proud administrator of a currently running, fully functional
Postfix system. See Chapter 7 for information about configuring Postfix to work
with a POP/IMAP server, so that your users do not need shell access to your mail
system. You should also review Chapter 6 for important information on DNS and
email.

To read about stopping and restarting Postfix, see “Starting, Stopping, and Reload-
ing Postfix” later in this chapter. The rest of this chapter discusses Postfix configura-
tion and administration.

Configuration Files
The directory /etc/postfix contains Postfix configuration files. The two most impor-
tant files used in the configuration of Postfix are master.cf and main.cf. These files
should be owned by, and only writable by, the root user. They should be readable by
everyone. Whenever you make changes to these files, you have to reload Postfix for
your changes to go into effect:*

postfix reload

The master daemon is the overall process that controls other Postfix daemons for
mail handling. The master daemon uses the master.cf file for its configuration infor-
mation. The master.cf file contains a line for each Postfix service or transport. Each
line has columns that specify how each program should run as part of the overall
Postfix system. See Chapter 3 for information on Postfix’s architecture and how vari-
ous components interact with each other. In many installations, you will never have
to change the default master.cf file. See “master.cf” later in the chapter for informa-
tion on when and how to make changes to master.cf.

* If you change the inet_interfaces parameter, you must stop and start Postfix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuration Files | 31

The main.cf Configuration File
The main.cf file is the core of your Postfix configuration. Nearly all configuration
changes occur in this file. The default main.cf file lists only a portion of the nearly
300 Postfix parameters. Most Postfix parameters do not need to be changed, but the
flexibility is there when it’s required. All Postfix parameters are listed and described
in the various sample configuration files. The sample files are located in the direc-
tory specified by the sample_directory parameter, which is usually the same direc-
tory as your main.cf file. Both the main.cf file and the sample files that come with the
Postfix distribution contain comments that explain each of the parameters.

Throughout this book, when the text says to modify a parameter, it
always refers to a parameter in your main.cf unless a different file is
indicated.

You can edit main.cf with the postconf command, as you saw earlier in the chapter,
or you can change the file directly with any text editor* (such as vi or emacs). The file
contains blank lines, comment lines, and lines that assign values to parameters.
Comment lines start with the # character and continue to the end of the line. Blank
and comment lines are ignored by Postfix. Parameters can appear in any order within
the file, and are written as you would expect:

parameter = value

A parameter definition must start in the first column of the line. The spaces around
the equals sign are optional.

Here is an example parameter assignment with a comment:

The myhostname value must be a fully qualified hostname.
myhostname = mail.example.com

The rest of the file continues below...

You cannot have a comment on the same line as a parameter. The following exam-
ple is incorrect and, with some parameters, could cause unexpected behavior that
might be difficult to track down:

#
This is a bad parameter assignment. Never do this.
#
myhostname = mail.example.com # must be fully qualified hostname

Do not use quotation marks around values. They have no significance in the Postfix
configuration, so they would be considered part of the value, which is probably not
what you want.

* Postfix expects configuration files to contain normal Unix-style line endings. If you edit your configuration
files from another platform, such as Windows or Mac, make sure that your editor uses the correct line end-
ings for Unix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 4: General Configuration and Administration

Line continuation

A line that starts with whitespace (tabs or spaces) is considered a continuation of the
previous line. This allows you to continue long parameter values onto multiple lines.
The parameter assignment:

mydestination = example.com oreilly.com ora.com postfix.org

is the same as:

mydestination = example.com
 oreilly.com
 ora.com
 postfix.org

Configuration variables

You can refer to the value of a defined parameter by putting a $ in front of the
parameter name:

mydomain = example.com
myorigin = $mydomain

This causes the value of myorigin to be “example.com.”

You can reference a value in the file even before it has been set. The following exam-
ple works as well as the previous one:

myorigin = $mydomain
mydomain = example.com

Multiple values

Many parameters can have more than one value. Multiple values can be separated by
commas, spaces, tabs, or new lines. Remember that when you separate values with
new lines there must be spaces or tabs in front of the values to indicate a continua-
tion of the previous line:

mydestination = $mydomain, example.com, oreilly.com
mydestination = $mydomain example.com oreilly.com
mydestination = $mydomain
 example.com
 oreilly.com

These three assignments to mydestination are effectively the same.

Certain parameters allow you to place multiple values in a text file and then point
the parameter to that file in main.cf. A value that starts with a forward slash is
assumed to be a pointer to a file. If your system receives mail locally for many desti-
nations, you may want to keep the list of destinations in a separate file. Then point
the mydestination parameter to that file:

mydestination = /etc/postfix/destinations

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuration Files | 33

The parameters that can use external files to store values are those that accept lists
where the order of the listed items is not significant, such as mynetworks,
mydestination, and relay_domains. Check the documentation for a particular param-
eter to see if it supports this feature.

If you have thousands of items in a list, it can be more efficient to keep them in a
lookup table instead. Lookup tables are described in the next section.

Whenever you make a change to main.cf, you must reload Postfix for your changes
to go into effect:

postfix reload

See “Starting, Stopping, and Reloading Postfix” later in the chapter for more infor-
mation about stopping and starting Postfix.

Lookup Tables
Rather than using complicated rewriting or pattern transformation rules as Send-
mail does, Postfix makes use of simple, yet flexible, lookup tables. Many parameters
point to lookup tables to obtain important configuration information. One such
parameter is canonical_maps. It’s used to rewrite email addresses in messages. Con-
sider a site that uses account names internally for email addresses, but wants any
publicly visible addresses to have the form firstname.lastname@example.com. For
example, the address kdent@example.com should appear as kyle.dent@example.com.
A canonical_maps lookup table provides the mapping from a key (kdent@example.
com) to a value (kyle.dent@example.com).

There are many parameters that use lookup maps, but they all work on the same
principle. An email message (or client) provides some kind of key used to look up a
value. Based on the value, Postfix takes some action or makes some change.

Lookup table format

Postfix lookup tables are usually Unix database files, which are specially indexed files
that provide faster access to the stored items. Lookup tables start as simple text files,
with each key and value on the same line separated by spaces or tabs:

#
canonical mappings
#
kdent@example.com kyle.dent@example.com

Each entry has a unique key. The keys are often referred to as the LHS, or lefthand
side of an entry, and the values are referred to as the RHS, or righthand side of an
entry. Keys in lookup tables are not case-sensitive. The files can contain comment
and blank lines just like main.cf, and line continuation works by putting whitespace
at the beginning of carry-over lines. Lookup tables also do not treat quotation marks
with any special significance.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 4: General Configuration and Administration

Once you have created a text file with all of your mappings, you have to execute the
postmap command against it to create the actual indexed version of the file:

postmap /etc/postfix/canonical

Whenever you change your text file you must execute postmap against it.

The postmap command can also be used to query lookup tables. Use the -q option to
query a value:

postmap -q kdent@example.com /etc/postfix/canonical
kyle.dent@example.com

Database formats

Different types of Unix database files have different internal formats. The format you
use depends on the database libraries available on your system. Normally Postfix
supports one or more of three types: btree, dbm, and hash. Depending on your sys-
tem libraries, you may have fewer or more than these three types available. It’s
important to know which map type you use. The postconf command with the -m
option lists all of the map types supported by your installation of Postfix:

$ postconf -m
static
pcre
nis
regexp
environ
proxy
btree
unix
hash

The output of this command lists all map types, some of which are used for access to
other kinds of storage. But you should find at least one of the three database types
(btree, dbm, and hash).

The default_database_type parameter tells you which database type Postfix uses by
default:

$ postconf default_database_type
default_database_type = hash

All of the examples in this book use the hash type, but if your installa-
tion is using something different, be aware of that as you follow the
examples.

If you don’t specify a database type with postmap, it automatically uses your default
type. In general, you can just use the default type configured on your system, but you
must know what it is when assigning lookup tables to mapping parameters.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuration Files | 35

When you assign a lookup table to a parameter, you must specify both the map type
and the path to the lookup table. The format of lookup maps is:

parameter = type:name

where type is the storage access method and name is the resource containing keys and
values. With indexed datafile lookups, name is the filename. The canonical example is
assigned as follows:

canonical_maps = hash:/etc/postfix/canonical

You can assign multiple lookup tables to a parameter. Postfix searches the tables in
the order listed, stopping as soon as it finds a match. Some table lookups are recur-
sive, depending on the parameter. The canonical_maps parameter in these examples
is one such parameter. With recursive lookups, once a value is found, Postfix tries to
match it against all of the keys again until a key matches itself or is not found.

You may have noticed that when postmap indexes files, it creates additional files.
postmap creates either one additional file with the extension .db, or two additional
files with the extensions .dir and .pag, depending on your database format. When
you assign the lookup table to its parameter, specify the path and filename without
any extensions.

Search order

Since keys are often email addresses, Postfix automatically parses addresses, breaking
them up into their parts. You can have keys that match a full address, just the domain
portion, or just the local part. The way Postfix searches for addresses or portions of
addresses depends on the type of mapping parameter. Certain maps might sensibly
include the simple local part of an address, such as canonical_maps. Others would not
expect a local part key, such as transport_maps. The order in which Postfix searches
for a match differs slightly, depending on which type of parameter it’s working with.
Check the lookup table’s manpage to see which search order it follows.

The search order where local parts are expected, such as with canonical_maps,
relocated_maps, and virtual_alias_maps, is as follows:

1. The complete address. Example: kdent@example.com

2. The local part alone. Example: kdent

3. The domain portion only, specified with the @ character. Example:
@example.com

For lookup tables where it doesn’t make sense to have a local part, such as with
transport_maps, Postfix searches for matches in the following order:

1. The complete address. Example: kdent@example.com

2. The domain by itself. Example: example.com

3. The domain specified with an initial period, which matches any subdomain.
Example: .example.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 4: General Configuration and Administration

If you always want domains to match themselves plus any subdomain, you can sim-
plify your lookup tables somewhat by setting the parent_domain_matches_subdomains
parameter. The parameter, by default, contains many lists. To add transport_maps to
the list, append it as follows:

parent_domain_matches_subdomains =
 debug_peer_list
 fast_flush_domains
 mynetworks
 permit_mx_backup_networks
 qmqpd_authorized_clients
 relay_domains
 smtpd_access_maps
 transport_maps
transport_maps = hash:/etc/postfix/transport

Now, a domain entry in the /etc/postfix/transport matches itself and all of its
subdomains automatically. You no longer need any entries such as the third
item, .example.com, from the preceding list.

Lookup tables and simple lists

Some parameters that normally take a simple list, such as mydestination, can also be
specified with a lookup table. The LHS keys are the items in the list. You still have to
provide a RHS value for each key, but the value is simply ignored. You can specify
any text you want. It’s a good place to provide yourself a comment. Using a lookup
table for a straight list is useful when you have thousands of items; otherwise, a sim-
ple text file is more than adequate and probably has better performance. If you use a
lookup table for lists of network IP addresses, you cannot use the network/netmask
notation to specify an entire subnet. You must list each address individually. Check
the documentation to see if a list parameter supports the lookup table feature.

Regular expression tables

Postfix provides a special lookup table type using regular expressions that offers even
more flexibility for matching keys in lookup tables. Regular expressions are used in
many Unix utilities. They provide a powerful tool for specifying matching patterns.
There are two types of regular expression libraries that you might use with Postfix,
depending on which libraries are available on your system.

By default, Postfix uses POSIX extended regular expressions, which I’ll refer to as
regexp. POSIX, which stands for Portable Operating System Interface, is a standard
that encourages portability across different operating systems. It includes specifica-
tions for regular expressions. Postfix also supports Perl-compatible regular expres-
sions, which I’ll refer to as pcre. If you’re used to regular expressions in Perl, you’ll
find that regexp patterns are a bit different. If you want pcre support, be sure you
have a pcre library to link with when building Postfix. With the pcre format, some

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuration Files | 37

features differ from regexp, and the performance is usually better. It’s possible that
your Postfix distribution already includes pcre support. You can check by executing
the postconf command with the -m option, as you did earlier in the chapter.

If pcre is listed among your map types, then you can use Perl-style regular expres-
sions for your regular expression lookup tables. But don’t rush to add pcre support if
you don’t have it; the default regexp is quite powerful and usually adequate for
administrators who need regular expressions. Install pcre only if you know of partic-
ular Perl-style regular expression features you need.

Both Perl-style and POSIX regular expressions are very well-documented in many
places. Any book on Perl should include information on its regular expressions, and if
you have Perl installed on your system, you should find a manpage called perlre(1).
Documentation for regexp usually appears in a manpage called re_format(7). If your
system does not include the manpage, you should be able to find it on the Web. sed &
awk by Dale Dougherty and Arnold Robbins (O’Reilly) contains information on
POSIX regular expressions.

To use regular expression tables, specify either regexp or pcre as the map type when
assigning tables to map parameters:

body_checks = regexp:/etc/postfix/re_body_checks

Entries in re_body_checks are conventionally specified—with the regular expression
pattern between two forward slashes—as the key, followed by whitespace, followed
by the mapped value:

/pattern/ value

The most common use of regular expression tables is with the header_checks and
body_checks parameters for blocking spam. See Chapter 11 for more information.

Other Formats
Postfix can make use of other backend systems for its lookup tables. (Later chapters
discuss using MySQL and LDAP lookup tables.) When you make use of these exter-
nal sources for lookup values, you should start with one of the simple database for-
mats, such as dbm or hash. Make sure your configuration works as expected. After
setting up your external data source, verify that it returns the same results as your
simple tables.

The postmap with the -q option is an important tool for testing any kind of lookup
table. For example, the following two commands should return the same values
when you test your MySQL database:

$ postmap -q hash:/etc/postfix/transport

$ postmap -q mysql:/etc/postfix/transport.cf

See Chapter 15 for more information on using Postfix with external data sources.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 4: General Configuration and Administration

Alias Files
Alias files are a special case of Postfix lookup tables because they use a Sendmail-
compatible format. The file has traditionally been called aliases, and its location
depends on your platform, but it is normally within the /etc directory or a subdirec-
tory below it. By default, Postfix is configured to point to your original aliases file, so
if you are migrating from Sendmail, your existing aliases continue to work.

Locating aliases

Historically, email systems used a single alias database. Postfix lets you have as many
as you want. Multiple alias files can help in organizing your configuration informa-
tion. Typically, administrators configure multiple alias files for convenience when
configuring separate mailing lists. The alias_maps parameter points to your alias
files.

If your system supports NIS, which is a network database of users (including their
aliases), then by default Postfix includes NIS among your alias maps. A typical
default alias_maps looks like the following:

alias_maps = hash:/etc/aliases, nis:mail.aliases

If your system includes support for NIS, but you’re not using it, you should change
the parameter so that it points to your aliases file only:

alias_maps = hash:/etc/aliases

You may want to locate your aliases file in your Postfix configuration directory for
consistency. Some administrators prefer to have all of the email configuration files
located together. Simply reassign alias_maps to point to the new location:

alias_maps = hash:/etc/postfix/aliases

You should also reassign alias_database so that your newaliases command continues
to work correctly (see the next section):

alias_database = hash:/etc/postfix/aliases

Building alias database files

Since the format of alias maps differs from that of Postfix lookup tables, you cannot
use postmap to build the alias database from your text file. Instead, Postfix provides
the postalias command. Its command-line syntax is the same as that of postmap,
allowing you to create or query alias maps. To build an alias database from your
aliases file, execute the following:

postalias /etc/aliases

Another Sendmail compatibility command related to alias files is the newaliases com-
mand. It provides a convenient way to rebuild your alias databases. The Postfix instal-
lation includes a replacement version of the command that follows the same syntax as
the original. It’s normally executed with no arguments and determines which alias

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuration Files | 39

files to rebuild from the alias_database parameter. The alias_database parameter
differs from alias_maps in that it includes only standard Unix database-mapped files
(those that should be indexed by newaliases), whereas alias_maps might also contain
other map types such as nis. newaliases uses the default_database_type parameter
discussed earlier to determine which database format to use.

Alias file format

The text file for alias databases is much like Postfix lookup tables, except for the alias
definition itself. Alias files can have blank and comment lines that are ignored. Com-
ments are marked by a # at the beginning of the line and cannot be on the same line
as an alias definition. A single alias definition can be broken onto multiple lines by
starting continuation lines with whitespace.

The form of an alias definition consists of the name being aliased, followed by a
colon, followed by one or more targets for the aliased name. Aliases can be directed
to different types of targets (discussed below). Multiple targets are separated by com-
mas. Both aliases and targets should be quoted if they contain whitespace or any spe-
cial characters such as a #, :, and @:

alias: target1, target2, ...

The LHS aliases are always local addresses, so you cannot specify a domain name
with an alias key. The target is often one or more addresses, but can be any of the
following:

Email addresses
Any RFC 2822 address is allowed, meaning target addresses can be local or for-
warded to another site for delivery. For example:

kyle.dent: kdent, kdent@oreilly.com

Filename
Specify the full path to a file. New messages are appended to the file specified.
Delivery occurs to the file as it would to any local mailbox. See Chapter 7 for
information on local delivery to mailboxes and on specifying different mailbox
formats. For example:

info: /usr/local/mail/info_box

Command
Specify a pipe character and a command. See Chapter 14 for more information
on delivery to commands. For example:

info: "|/usr/local/bin/autoreply"

:include:
An included file contains a list of additional alias targets. The targets in the file
can be any valid target type as described here, but by default filenames and com-
mands are not allowed. The next section discusses configuration parameters to
override these default restrictions. For example:

info: :include:/usr/local/mail/info_list

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 4: General Configuration and Administration

Normally, when Postfix makes a local delivery it assumes the identity of the recipi-
ent of the message. With aliases, Postfix uses the identity of the owner of the alias
file, except when the file is owned by root. When a delivery would occur as root,
Postfix uses the identity of the account configured with the default_privs parameter
instead.

Alias restrictions

You can control which kinds of targets are allowed in your alias files with the param-
eters allow_mail_to_commands and allow_mail_to_files. Each of these parameters
takes a list of the aliasing mechanism that permits its action. Aliasing mechanisms
are “alias,” the alias file we’ve been discussing; “include,” the include target, and
“forward,” which is the .forward file discussed in Chapter 7.

The default setting for the two parameters is to allow delivery to commands and files
from both alias and .forward files, but not from include files, for security consider-
ations. If you want to disallow delivery to commands and files from your aliases
database entirely, set the parameters to blank:

allow_mail_to_commands =
allow_mail_to_files =

If you would like to make delivery to commands and files available in all the alias
mechanisms, set the parameters as follows:

allow_mail_to_commands = alias, forward, include
allow_mail_to_files = alias, forward, include

This setting is equivalent to the default behavior for Sendmail. However, it could
expose access to possibly vulnerable mailing-list managers that might be coerced into
adding a filename or command as a destination address. If you don’t need the addi-
tional include option for files and commands, it’s best to accept the Postfix default.

Important aliases

There are several common aliases that are configured by default. By convention, these
system aliases point to the root account. You want to make sure that root’s mail is
read regularly. This is normally accomplished by creating an alias for root to the nor-
mal login account of the person or persons responsible for system administration.

RFC 2142 defines several mailbox names that all domains should have, depending
on which services they run on the Internet. At a minimum, you should have a
postmaster alias, and you should review the RFC to see if there are other aliases you
want to create.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Important Configuration Considerations | 41

Important Configuration Considerations
We saw at the beginning of this chapter how Postfix requires only minimal configu-
ration changes to work. Depending on how you plan to use your Postfix system, you
may want to consider some of the more common options. This section discusses
how your system identifies itself, and then covers the very important topic of relay
control.

Configuring Your MTA Identity
There are four parameters dealing with your system’s hostname and domain that you
want to consider, no matter how you use Postfix: myhostname, mydomain, myorigin,
and mydestination.

myhostname and mydomain

We discussed the purpose and importance of the myhostname parameter earlier in this
chapter. If myhostname is not specified, Postfix uses the function gethostname to deter-
mine what your system’s hostname is. If your system correctly reports the fully quali-
fied hostname, you can leave myhostname unspecified in the configuration file. Some
systems may not be configured correctly or may not report the fully qualified version
of the hostname. In these cases, you can set either myhostname to the fully qualified
hostname or mydomain to your system’s domain. If mydomain is explicitly set, Postfix
automatically sets myhostname to the domain name specified and the local hostname
reported by gethostname to create the fully qualified hostname.

If you set myhostname to the system’s fully qualified hostname but omit mydomain,
Postfix uses the value of myhostname, minus the first component of the fully qualified
hostname, to automatically set mydomain. A value of mail.example.com for myhostname
causes mydomain to be example.com unless you explicitly set it to something else. Sim-
ilarly, a hostname of mail.ny.example.com causes the value to be ny.example.com. If
your system does not report its fully qualified name, and you have not set either the
mydomain or myhostname parameters, Postfix reports the problem in your log file. See
“Logging” later in this chapter.

myorigin

When your users send or receive mail through the Postfix system with no domain
name specified in the envelope or header addresses, the parameter myorigin deter-
mines what domain name should be appended. The default is to use the value of
myhostname. If Postfix is running on a system whose hostname is mail.example.com,
messages from the user kdent have a From: address of kdent@mail.example.com. How-
ever, frequently users want their mail to be sent from the domain name without any
extra host information (kdent@example.com instead of kdent@mail.example.com). If
that is the case, set myorigin to $mydomain:

myorigin = $mydomain

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 4: General Configuration and Administration

mydestination

The mydestination parameter lists all the domains your Postfix system should accept
mail for and deliver to local users. By default Postfix accepts mail destined for
$myhostname and localhost.$mydomain. If you want your system to accept mail for
your entire domain and not just the single host it is running on, add $mydomain to the
list:

mydestination = $myhostname, localhost.$mydomain, $mydomain

Now your mail server can act as a gateway receiving all mail for the domain.

Relay Control
In addition to accepting mail and delivering messages to your local users, Postfix also
relays messages to other systems. It’s very important to restrict who is allowed to
relay messages through your system. Systems on your own network may require the
ability to send messages anywhere, but you do not want to provide the rest of the
world with the same service. Relay control is an important topic in email administra-
tion because of the prevalence of Unsolicited Bulk Email (UBE), or spam. (See
Chapter 11 for more information on UBE.) A common practice among spammers is
to find a well-connected system that allows them to relay their mail. You want to
prevent anyone who is not authorized from using your system to relay mail. If you
leave yourself configured as an open relay, not only will you be contributing to the
spam problem, but your own machine may become unusable as it is abused by
spammers. Furthermore, you may find that other systems start refusing mail from
you as they discover that your system is the source of spam. They’ll refuse the spam
as well as any legitimate messages your own systems send. Mail servers that permit
anyone to relay mail are called open relays.

Restricting relay access

By default Postfix is not an open relay. The parameters mynetworks_style and
mynetworks determine what other systems can use your mail server to send messages.
The default configuration allows relaying only from other machines that are con-
nected to the same IP subnet as your server. You can limit or broaden the range of
addresses that should be allowed to relay by setting the parameter mynetworks_style.
If you prefer to limit relaying to the local machine only, set mynetworks_style to
“host”. You can also set mynetworks_style to “class” to allow relaying by any host
within the same class A, B, or C network as your server. For many networks a class
setting opens relaying to too many systems. If you aren’t familiar with IP address
classes, stick to the default “subnet” or more restrictive “host” settings.

Alternatively, you can explicitly indicate the hosts that should be allowed to relay
mail by setting mynetworks. If you set mynetworks, the mynetworks_style parameter is
ignored. You can list individual IP addresses or specify subnets using the network/
netmask notation—for example, 192.168.100.0/28. This parameter is handy if you

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Important Configuration Considerations | 43

need to provide mail relay to hosts outside of your network because you can list spe-
cific IP addresses regardless of their relationship to your own subnet. If, for example,
you want to provide relaying to remote users, you simply add an IP address to your
list. In this case, your remote users need a static IP address, or at least an address
assigned from a limited range of addresses. If your remote users do not have static IP
addresses, then you have to configure some kind of SMTP authentication.

SMTP authentication

All of the techniques for SMTP authentication introduce their own complexities. You
would be wise to consider simpler options before selecting an authentication tech-
nique. Is it possible to get static IP addresses for your remote users? Can your remote
users avail themselves of another SMTP server? Perhaps your users’ remote access
provider offers an SMTP server as well.

Your first inclination may be to use UBE controls to permit mail relaying when a
message’s envelope sender address is from the local domain. Don’t do this. Enve-
lope addresses are trivial to fake, and spammers know to use local addresses for this
purpose. Configuring your mail server in this way makes you an open relay.

Dynamic IP solutions

Chapter 12 discusses using SASL for SMTP authentication. SASL is a general proto-
col that defines how a server and client can exchange authentication credentials. It
requires that additional libraries be linked to your SMTP server. There are three
alternatives to SASL that all work similarly: pop-before-smtp, DRAC (Dynamic Relay
Authorization Control), and WHOSON. Each of these methods is designed to work
with clients that have dynamically assigned IP addresses. They require that a user
first log in to a POP/IMAP server, thereby supplying the client’s currently assigned IP
address to your system or network. The client IP address is fed to the SMTP server,
which then permits mail relaying by the client system for some configurable time
limit. This technique is mostly transparent to end users, but it does require that they
first check for new messages (logging into the POP/IMAP server) before trying to
send out any messages.

Both pop-before-smtp and DRAC work with Postfix by dynamically updating a Post-
fix lookup table, adding new addresses as users authenticate, and deleting others
when the time period expires. Postfix doesn’t require any special libraries or configu-
ration. You simply configure it to check the lookup table that is updated when users
log in via your POP/IMAP server. Your POP/IMAP server, on the other hand, may
require changes and recompiling to work. DRAC differs from pop-before-smtp in
that it can work over a network, while pop-before-smtp requires that the POP/IMAP
server be installed on the same system as the SMTP server.

WHOSON is actually a protocol that provides an interface to both the POP/IMAP
and SMTP servers. You have to run a WHOSON server on your network, and you
must obtain a patch that adds a new lookup type to Postfix. After building Postfix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 4: General Configuration and Administration

with the patch, it can communicate with the WHOSON server to determine if a par-
ticular client IP address should be allowed to relay mail.

Certificate authentication

Another option to consider is client-side certificate authentication. (See Chapter 13
for a full discussion of Transport Layer Security and certificates.) We normally think
of certificates as a means to encrypt communications, but they can also be used as a
strong method of authentication. However, they do require management of certifi-
cates and support for the TLS protocol.

None of these add-ons is an ideal solution. They require additional code compiled
into your existing daemons that may then require special write access to system files.
They also require additional work for busy system administrators. If you cannot use
any of the nonauthenticating alternatives mentioned earlier, or your business
requirements demand that all of your users’ mail pass through your system no mat-
ter where they are on the Internet, SASL is probably the solution that offers the most
reliable and scalable method to authenticate users.

Administration
Running a mail server is an ongoing task. You cannot start it and forget about it.
There are periodic administrative tasks, and you should regularly check for any prob-
lems your system might have. This section discusses many of those tasks and how to
accomplish them with Postfix.

Postfix provides a utility through the postfix command to validate many aspects of
your installation. The command checks for configuration problems, looks at direc-
tory and file ownership, and creates any missing directories. Executing:

postfix check

should report no messages on a correctly installed system. If there are any problems,
the command reports them to you both on the screen and in your log file.

Logging
Since Postfix is a long-running program, you should regularly check your system’s
log file for warnings or messages. Things can change on your system that might
impact Postfix. Almost all Postfix activity, successful or not, is logged. Whenever you
start or reload Postfix, it is a good idea to check your log file for messages.

Postfix logging is accomplished by using your system’s syslog daemon. System log
files are an aspect of system administration that vary across versions of Unix, so you
may have to consult your own system documentation to fully understand Postfix
logging.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Administration | 45

In general, the syslog daemon (syslogd) receives messages from various system pro-
cesses and writes them to their final destination (often a file). syslogd organizes mes-
sages according to their importance and the application or facility that generated the
message. The file /etc/syslog.conf tells syslogd where to write each type of message.
The logging facility used by Postfix is mail. If you don’t know where to find mes-
sages logged by Postfix, the file /etc/syslog.conf should point you in the right direc-
tion. Some operating systems, by convention, log nearly everything to a single file,
such as /var/log/syslog, while others prefer to separate messages by applications or
services, so that Postfix messages go to a file like /var/log/maillog. For the latter type
of systems, you might find an entry like the following in /etc/syslog.conf:

mail.* -/var/log/maillog

Once you locate your mail log file, check it regularly. You’ll probably want to check
it at least daily, but decide for yourself, depending on the volume of mail your server
handles and your existing log rotation scheme. You can use the following command
to find Postfix messages that might be of interest:

$ egrep '(reject|warning|error|fatal|panic):' /var/log/maillog

assuming that your log file is /var/log/maillog. If not, substitute the name of your own
mail log file.

Starting, Stopping, and Reloading Postfix
You saw earlier in the chapter how to use the postfix command to start Postfix:

postfix start

Once Postfix is running, if you make any changes to main.cf or master.cf, have Post-
fix reread its configuration by executing postfix with the reload argument:

postfix reload

Postfix gracefully terminates running processes after they have finished any tasks
they are working on, rereads its configuration files, and continues to receive mail
without interruption.

The most important thing when starting or reloading Postfix is to check your system
log to see if Postfix reports any errors or warnings.

You can stop Postfix with the stop argument. Running processes will still finish any
tasks they’re working on and then terminate:

postfix stop

You should not stop and start Postfix when a reload will suffice. Also, do not stop,
restart, or reload frequently, since any of these actions can impact performance.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 4: General Configuration and Administration

Running Postfix at System Startup
Most systems automatically start Postfix when they boot up because of Postfix’s
built-in Sendmail compatibility. Sendmail is typically launched at startup with a
command like:

sendmail -bd -q15m

The Postfix sendmail command understands nearly all of the same options as Send-
mail, so if your server already has scripts that start Sendmail, those same scripts will
start Postfix. One common Sendmail option ignored by Postfix is -q, which is used
by Sendmail to specify the time between queue scans. The time between queue scans
for Postfix is set in the main.cf file with the queue_run_delay parameter, which
defaults to 1000 seconds.

Your system may have a configuration option to turn on automatic startup of Sendmail.
After you install Postfix, turning on this option should be sufficient to cause Postfix to
start at system initialization. Different versions of Unix have different idioms for config-
uring a server to start a process at system initialization. If your system’s Sendmail start
script doesn’t work, or you prefer to use a Postfix-specific script, you can easily create a
start script.

Do it yourself

The requirements and conventions for initialization scripts vary among the different
versions of Unix, so you should consult your system’s documentation to see where
and how to add startup options. On System V–type systems, you can install a script
like the one shown in Example 4-1.

Example 4-1. Sample SysV-style init script

#!/sbin/sh
#
Set the path to your own logger and postfix commands.
#
LOGGER="/usr/bin/logger"
POSTFIX="/usr/sbin/postfix"
rc=0

if [! -f $POSTFIX] ; then
 $LOGGER -t $0 -s -p mail.err "Unable to locate Postfix"
 exit(1)
fi
if [! -f /etc/postfix/main.cf] ; then
 $LOGGER -t $0 -s -p mail.err "Unable to locate Postfix configuration"
 exit(1)
fi

case "$1" in
 start)
 echo -n "Starting Postfix"
 $POSTFIX start

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

master.cf | 47

Depending on your environment, you may also want to add additional pre- and post-
checks to this example. You should install your script in the correct directory for
your system, commonly /etc/init.d, although HP-UX, for example, uses /sbin/init.d.
Once the script is in place, you also have to create a symlink to it in the appropriate
run level directory for your server (often /etc/rc2.d). For example, if you named the
above script postfix, create a symlink such as the following:

ln -s /etc/init.d/postfix /etc/init.d/rc2.d/S95postfix

You should consult your system documentation for the details on your platform.

Queue Management
The Postfix queue is also an important part of email administration. See Chapter 5
for information on the Postfix queue manager.

master.cf
The Postfix master daemon launches all of the other Postfix services as they are
needed. The various services, and how they are run, are specified in the master.cf file.

The master configuration file works like other Postfix configuration files. A com-
ment is marked by a # character at the beginning of a line. Comments and blank
lines are ignored. Long lines can continue onto subsequent lines by starting the
carry-over lines with whitespace.

 rc=$?
 echo "."
 ;;

 stop)
 echo -n "Stopping Postfix"
 $POSTFIX stop
 rc=$?
 echo "."
 ;;

 restart)
 echo -n "Restarting Postfix"
 $POSTFIX reload
 rc=$?
 echo "."
 ;;

 *)
 echo "Usage: $0 {start|stop|restart}"
 rc=1

esac
exit $rc

Example 4-1. Sample SysV-style init script (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 4: General Configuration and Administration

Example 4-1 shows a sample file. Each column contains a specific configuration
option. A dash in a column indicates the default setting for that column. Some
default values come from parameters in the main.cf file.

The following list describes each column in the file, including its default setting:

service name
The name of the component. The rules for naming a service depend on the type
of service, as specified in the transport type column (see below).

transport type
Valid transport types are inet, unix, and fifo. Each of these indicates a method
of communication for this service.

The inet type refers to network sockets. A network socket component can com-
municate with other processes on the same machine or other machines on the
network. Network sockets use a combination of a system’s IP address and the
port used for connecting. They are commonly written in combination as the host
or IP address and the port, separated by a colon. The name of an inet transport
in master.cf is a socket specified as the host and port. The name can be written
as just the port if it’s on the local system. You can use a hostname or an IP

Example 4-2. Sample master.cf file

#= =
service type private unpriv chroot wakeup maxproc command + args
name (yes) (yes) (yes) (never) (100)
#= =
smtp inet n - y - - smtpd
pickup fifo n - n 60 1 pickup
cleanup unix n - n - 0 cleanup
qmgr fifo n - n 300 1 qmgr
rewrite unix - - n - - trivial-rewrite
bounce unix - - n - 0 bounce
defer unix - - n - 0 bounce
flush unix n - n 1000? 0 flush
proxymap unix - - n - - proxymap
smtp unix - - y - - smtp
relay unix - - y - - smtp
 -o smtp_helo_timeout=5 -o smtp_connect_timeout=5
showq unix n - n - - showq
error unix - - n - - error
local unix - n n - - local
virtual unix - n n - - virtual
lmtp unix - - n - - lmtp
maildrop unix - n n - - pipe
 flags=DRhu user=vmail argv=/usr/local/bin/maildrop -d ${recipient}
cyrus unix - n n - - pipe
 user=cyrus argv=/cyrus/bin/deliver -e -r ${sender}
 -m ${extension} ${user}
uucp unix - n n - - pipe
 flags=Fqhu user=uucp argv=uux -r -n -z -a$sender -
 $nexthop!rmail ($recipient)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

master.cf | 49

address for the host, and the port can be the actual port number, or its symbolic
name. (Symbolic names for ports come from the /etc/services file. See your sys-
tem documentation.)

The unix type refers to Unix domain sockets, and fifo refers to named pipes.
Both are used for communication between processes on the same machine. Both
Unix domain sockets and FIFOs use special files for their communications. The
names for unix and fifo components follow the same naming rules as for valid
Unix filenames without directories. Postfix creates special communications files
using the service name. Unix domain sockets and named pipes are standard
Unix interprocess communications tools. If you would like more information
about them, refer to a text on Unix programming.

Table 4-1 shows examples of valid service names for the various transport types.

private
Access to some components is restricted to the Postfix system itself. This col-
umn is marked with a y for private access (the default) or an n for public access.
inet components must be marked n for public access, since network sockets are
necessarily available to other processes.

unpriv
Postfix components run with the least amount of privilege required to accom-
plish their tasks. They set their identity to that of the unprivileged account speci-
fied by the mail_owner parameter. The default installation uses postfix. The
default value of y for this column indicates that the service runs under the nor-
mal unprivileged account. Services that require root privileges are marked with
n.

chroot
Many components can be chrooted for additional security. The chroot location
is specified in the queue_directory parameter in main.cf. The default is for a ser-
vice to run in a chroot environment; however, the normal installation marks all
components with an n so they are not chrooted when they run. Chrooting a ser-
vice adds a level of complexity that you should thoroughly understand before
taking advantage of the added security. See “chroot” later in the chapter for
more information on running Postfix services in a chroot environment.

Table 4-1. Example service names

Service name Transport type Description

smtp inet Name for the smtpd daemon. The name is the symbolic name for the
SMTP port.

127.0.0.1:10025 inet A component that listens on the loopback interface on port 10025.

465 inet A component that listens on the local host on port 465.

maildrop unix A component that is invoked through Postfix’s pipe daemon.

pickup fifo A Postfix FIFO component.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 4: General Configuration and Administration

wakeup
Some components require a wake-up timer to kick them into action at the speci-
fied interval. The pickup daemon is one example. At its default setting of 60 sec-
onds, the master daemon wakes it up every minute to see if any new messages
have arrived in the maildrop queue. The other services that require a wake-up
are the qmgr and flush daemons. A question mark character (?) can be added at
the end of the time to indicate that a wake-up event should be sent only if the
component is being used. A 0 for the time interval indicates that no wake-up is
required. The default is 0, since only the three components mentioned require a
wake-up. The values as they are set in the Postfix distribution should work for
almost all situations. Other services should not have wakeup enabled.

maxproc
Limits the number of processes that can be invoked simultaneously. If unspeci-
fied here, the value comes from the parameter default_process_limit in main.cf,
which is set to 100 by default. A setting of 0 means no process limit. You may
want to adjust maxproc settings if you run Postfix on a system with limited
resources or you want to optimize different aspects of the system.

command
The actual command used to execute a service is listed in the final column. The
command is specified with no path information, because it is expected to be in
the Postfix daemon directory specified by the daemon_directory parameter in
main.cf. By default the directory is /usr/libexec/postfix. All of the Postfix com-
mands can be specified with one or more -v options to turn on increasingly more
verbose logging information, which can be helpful if you must troubleshoot a
problem. You can also enable information for a debugging program with the -D
option. See the DEBUG_README file that comes with the Postfix distribution
for more information on debugging if necessary.

Each of the Postfix daemons has its own set of options that can be specified after
the command itself. (See the manpages for the individual daemons to learn
about the available options.) You can specify only Postfix commands in the com-
mand column. If you want to execute your own commands, use the Postfix pipe
daemon. See the Postfix pipe manpage for more information.

Time Units
Some Postfix parameters accept a length of time for their values. Time values in Postfix
can be specified with the appropriate abbreviation to indicate their units: s (seconds),
m (minutes), h (hours), d (days), or w (weeks). If no time unit is specified, each time
parameter has a default unit that it assumes for the given value. You should check the
documentation to see what the default value is for a given parameter, or always be sure
to specify a unit with the time.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Receiving Limits | 51

If main.cf offers configuration information for a component, you can override that
information in master.cf by providing an alternative in an -o option. To create a spe-
cialized smtp client service, for example, add another entry to master.cf such as the
following:

smtp-quick unix - - n - - smtp
 -o smtp_connect_timeout=5s

There can be no spaces between the parameter and the equals sign and the
assigned value. As configured in the example, smtp-quick is a specialized smtp ser-
vice that doesn’t wait as long for a server to respond when it tries to connect. This
SMTP client follows the configuration in main.cf, but uses a different value for the
smtp_connect_timeout parameter. You’ll see more examples later in this chapter and
elsewhere in the book.

Receiving Limits
The smtpd daemon can enforce a number of limits on incoming mail. The limits are
configurable through several parameters in the main.cf file. You can limit the size of
messages, the number of recipients for a single delivery, and the length of lines in a
message. You can also limit the number of errors to allow from a single client before
breaking off communications.

To limit the number of recipients for a single message, use the smtpd_recipient_limit
parameter. The default is 1,000 recipients, and it should be adequate for normal oper-
ation.

The message_size_limit parameter limits the size of any message your system will
accept. The default is 10 MB. If you have limited disk space or memory, you might
want to lower the value. On the other hand, if your users commonly receive large
attachments, you may have to increase it.

Increasingly frequent errors from the same client might indicate a problem or an
attack. Postfix keeps a counter of errors, and handles potential problem clients by
introducing delays with each error. The delays can help protect your system from
misconfigured or malignant clients. As the number of errors increases so does the
length of each delay. The length of the initial delay is specified by smtpd_error_
sleep_time with a default of one second. After the number of errors exceeds the value
set for smtpd_soft_error_limit, Postfix increases the delay by one second for every
error, so that with each error, there is a slightly longer delay. Finally, when the error
count hits the value set in smtpd_hard_error_limit, Postfix gives up on the client and
disconnects.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 4: General Configuration and Administration

If a malicious program connects to your mail server and sends garbage commands,
attempting to crash your server, the bogus commands appear to Postfix as errors
from a misbehaving client. Assume the following values for the delay parameters:

smtpd_error_sleep_time = 1s
smtpd_soft_error_limit = 10
smtpd_hard_error_limit = 20

With these settings, Postfix initially waits one second (smtpd_error_sleep_time) after
each error before responding to the client. After 10 (smtpd_soft_error_limit) such
probes, Postfix starts increasing the length of each delay. After 11 errors, Postfix
waits 11 seconds. After 12 errors, Postfix waits 12 seconds, and so on. Once the
number of errors hits 20 (smtpd_hard_error_limit), Postfix disconnects, cutting off
the malicious program. If the program connects again, it simply gets the same treat-
ment each time it starts creating problems.

Rewriting Addresses
Postfix tries to make sense of addresses in email and writes them using the standard
RFC 2822 format. Certain address rewriting occurs automatically.

You saw earlier in the chapter how Postfix appends myorigin to a local name that has
no domain part. Postfix also appends the value of mydomain to addresses that include
only the host portion without the domain name. This fixes addresses that look like
kdent@host so they become kdent@host.example.com.

Canonical Addresses
Postfix provides another type of address rewriting that lets you map disparate
addresses into a standard format for your entire site. The canonical_maps parameter
points to a lookup table of address mappings. (While the word canonical has many
meanings, among computer professionals it means “the usual, standard, or normal.”)
If different mail systems on your network create addresses in different ways, you can
relay them all through your Postfix gateway and have it fix up the addresses into your
standard format. Canonical maps are often used to change addresses from an inter-
nal format to a public one. Include entries like the following in your canonical table:

#
/etc/postfix/canonical
#
pabelard@example.com peter.abelard@example.com
hfulbert@example.com heloise.fulbert@example.com

They can also rewrite addresses completely.

#
/etc/postfix/canonical
#
pabelard@example.com abelard@oreilly.com
hfulbert@example.com heloise@oreilly.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Rewriting Addresses | 53

In main.cf, point the canonical_maps parameter to the canonical file:

canonical_maps = hash:/etc/postfix/canonical

Be sure to execute postmap against your canonical file and reload Postfix so that it rec-
ognizes your changes to main.cf:

postmap /etc/postfix/canonical
postfix reload

The canonical_maps parameter affects all of the addresses, including envelope and
message headers. If Postfix finds a match, it makes the change. If you want your
changes to affect only sender or recipient addresses, Postfix provides the additional
parameters sender_canonical_maps and recipient_canonical_maps. They both work
the same as canonical_maps, but only on their respective classes of addresses. If you
use either of these two parameters in addition to canonical_maps, Postfix first fixes
the addresses according to sender_canonical_maps and recipient_canonical_maps,
and then canonical_maps.

Turning Off Address Completion
Postfix’s expansion of incomplete email addresses is sometimes the source of confu-
sion for end users. If your system is hosting the domain example.com and receives an
email message where the From: message header contains an incomplete address like:

From: Marketing
To: kdent@example.com

Postfix performs its normal repairs, and the message header becomes:

From: Marketing@example.com
To: kdent@example.com

Incomplete addresses, such as in this example, are often employed by spammers.
When naive users see the adjusted address, they assume that the spam originated on
your server. It is possible to configure Postfix so that it doesn’t append your domain.
You probably don’t want to do so unless your mail system is used strictly as a mail gate-
way and no messages are sent from the machine itself. Many applications expect RFC
2822 conforming addresses, and you may run into problems if your addresses are not
complete.

To prevent Postfix from appending the domain in myorigin or mydomain to partial
addresses, you can change the parameters append_at_myorigin and append_dot_mydomain:

append_at_myorigin = no
append_dot_mydomain = no

Under most circumstances you do not want to do this. Postfix itself assumes addresses
are in the correct format, as do many other applications that handle email messages. A
better solution is to reject messages that do not include complete email addresses. For
more information on problem email, see Chapter 11.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 4: General Configuration and Administration

Masquerading Hostnames
Address masquerading refers to the idea that you can hide the names of internal
hosts, and make all addresses appear as if they originated from the gateway system
itself. You may have internal systems that use your Postfix server as a gateway. When
mail is sent from these systems and the sender addresses include the fully qualified
hostname, you may want addresses to appear with the domain name only. The
masquerade_domains parameter strips hostnames down to their simpler domain
names.

The parameter takes a list of domains. Any address whose fully qualified hostname
matches the domain portion is stripped down to just the domain name:

masquerade_domains = example.com

Addresses that look like heloise@server1.example.com and frank@server2.example.com
are converted to heloise@example.com and frank@example.com.

You can list multiple domains and subdomains. Postfix processes addresses against
masquerade domain names in the order you list them. Consider a network that
includes the two subdomains, acct.example.com and hr.example.com. You want
addresses from these domains to show the subdomain, but you want addresses from
any other domain or host in the network to show the parent domain. Set masquerade_
domains as follows:

masquerade_domains = acct.example.com hr.example.com example.com

With this setting, the address heloise@sys3.acct.example.com matches acct.example.com,
so that it becomes heloise@acct.example.com. The address frank@db.hr.example.com
matches hr.example.com, and becomes frank@hr.example.com. Finally, helene@server1.
example.com matches the last value, example.com, to become helene@example.com.

If you want to preserve a domain name that would otherwise be stripped down, you
can preface the domain with an exclamation point:

masquerade_domains = !it.example.com, example.com

In this case, the domain it.example.com will not be rewritten, so the address
kdent@it.example.com stays as it is.

You can exclude specific account names from masquerading. For example, if you
want an address like root@db.example.com to stay intact, add the account to the
masquerade_exceptions parameter:

masquerade_exceptions = admin, root

When you use masquerading, it is normally applied to all envelope and header
addresses but not envelope recipient addresses. This allows mail addressed to a spe-
cific host to be delivered from the mail gateway to that particular system, while still
rewriting addresses for messages sent from the host. If you prefer to have all
addresses masqueraded, set the masquerade_classes parameter to include the com-
plete list of address classes recognized by Postfix:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Rewriting Addresses | 55

masquerade_classes = envelope_recipient, envelope_sender,
 header_sender, header_recipient

Be aware that if you set masquerade_classes this way, a gateway mail system may no
longer know where to deliver a message that was originally addressed to
kdent@server1.example.com once it has been rewritten as kdent@example.com.

Relocated Users
The relocated_maps parameter points to a lookup table where you can store a list of
addresses or domains that have moved to another location:

relocated_maps = hash:/etc/postfix/relocated

The lookup table uses the old address as the key and its new location as the value.
When a message is delivered to a relocated address, Postfix rejects the delivery
attempt with a message that includes the user’s new address as specified in the
lookup table. You can also list just a domain name to have all recipients at that
domain rejected with your specified message.

The file /etc/postfix/relocated contains entries like:

kdent@ora.com kdent@oreilly.com
heloise@ora.com hfulbert@oreilly.com
@example.com oreilly.com

Messages sent to either kdent@ora.com or heloise@ora.com are rejected with an
error message that gives their respective new addresses. Any messages sent to
example.com are rejected regardless of what the local part is. The message reports
that the address has moved to oreilly.com.

Unknown Users
A local address that is not listed in relocated or other maps, and is not an account on
the system is an unknown user. Normally, when Postfix receives mail for an unknown
user, it rejects it. If you prefer to capture all of the messages sent to nonexistent
accounts, you can use the luser_relay parameter. Set it to any email address to have
messages destined for unknown users sent to the address you provide. You must also
set local_recipient_maps to blank to prevent Postfix from rejecting mail for unknown
users:

luser_relay = catchall
local_recipient_maps =

Assuming catchall is a legitimate address (alias or user account) on your system, it
will receive all messages sent to nonexistent users. Be careful when using luser_relay,
since spammers often launch dictionary attacks, where they try enormous lists of
addresses hoping to find a legitimate one at your site. If luser_relay is configured, it
will catch all of the spam.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 4: General Configuration and Administration

chroot
Postfix provides multiple layers of security. One such layer is the option to permit
most Postfix services to run within a chroot environment. The Unix chroot function
allows a process to change its view of, and access to, its filesystem by changing its
root directory to a new path other than the normal /.

The chroot feature is particularly beneficial for processes that must communicate
with external, potentially hostile clients. If an attacker somehow manages to sub-
vert the smtpd daemon, for example, the attacker gains only very limited access to
the filesystem. Configuring for a chroot environment is an advanced Postfix feature
that adds a layer of complexity that you or your administrators may not want to deal
with. Generally, chroot is not needed, except for sites that use Postfix in a highly
secure environment or on particularly exposed servers, such as dedicated firewall
systems and bastion hosts.

All of the Postfix processes that use chroot change their root directory to the direc-
tory specified in the queue_directory parameter, which is normally /var/spool/postfix.
When a process runs chrooted, the directory /var/spool/postfix/pid, for example,
becomes /pid to that process, and the process cannot access any files other than those
below its new root.

To chroot individual components, edit your master.cf file. Change the fifth column
to y. The chroot option is possible with all components except the pipe, virtual,
local, and proxymap services. In Example 4-1, chroot is enabled for the SMTP clients
and server.

Since chroot changes the environment of the process, all of the resources the
chrooted daemon needs must be available below the new root directory. Unfortu-
nately, the specific resources Postfix daemons might need depend on your platform.
In general, Postfix might require resources that provide user information (/etc/
passwd), name resolution configuration (nsswitch.conf or resolv.conf), timezone infor-
mation, or shared libraries. Some platforms also require certain device files. There are
platform-specific scripts that come with the Postfix distribution. They’re available in
the examples/chroot-setup/ subdirectory below the main distribution directory.

Executing the correct script should be sufficient to set up the chroot environment on
your system. If there is not a script for your platform, you may have to experiment a
little to find everything you need. Consider all of the resources mentioned above and
review the example scripts for other platforms. Watch your logs for error messages
after you chroot a process. An entry like the following:

postfix/smtp[1575]: fatal: unknown service: smtp/tcp

shows that Postfix cannot determine what port the smtp service uses. This problem is
fixed by placing the /etc/services file into the chroot, by copying it to /var/spool/
postfix/etc/services. Other symptoms show up in the log complaining of similar types
of problems.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Documentation | 57

If the normal Postfix log doesn’t give enough information, you may have to run a
trace to see where the program fails. Look for tools such as truss, strace, and tusc
on your system. These tools can be used to see where a service fails when it tries to
run in a chroot. If you discover the failure is due to a missing component, copy the
component into the chrooted environment. See the DEBUG_README file that
comes with Postfix for instructions on attaching tracing tools to Postfix.

Once you have Postfix running in a chroot, you need to make sure you keep your
chroot resources in sync with the normal system files. If your chroot requires /etc/
passwd, for example, whenever the system /etc/passwd changes, the chroot version
must be updated, too. Creating link files doesn’t work because symlinks cannot cross
the chroot boundary, and hard links do not work across filesystems.

Documentation
The Postfix distribution ships with a lot of documentation. Depending on your
installation package, you may or may not have all of the documents. You should
have at least the manpages and sample configuration files. The sample files are
located in the directory specified by the sample_directory parameter, which is usu-
ally the same directory in which your main.cf file resides. All of the Postfix parame-
ters are documented in one or more of the sample files.

When Postfix was installed, the manpages should have been installed in a sensible
place on your system. If they are in a directory where your system expects to find
them, you only have to type, for example:

$ man postfix

to have the manpage displayed on your screen. If your system replies with an error
message such as:

$ man postfix
No manual entry found for postfix.

then either the pages are not installed or they are not in a location your system
expects to find them. Read the documentation for your system to find out about set-
ting your MANPATH variable or moving the manpages to a more standard location for
your platform.

There are many manpages for various Postfix commands, daemons, and lookup
tables. All of the documentation is also available as HTML files. If the HTML files
are not installed on your system, you can find them on the Postfix web site at http://
www.postfix.org/. The online documentation always refers to the current release of
Postfix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

58

Chapter 5CHAPTER 5

Queue Management

The queue manager daemon qmgr is in many ways the heart of your Postfix system.*

All messages, both outbound and inbound, must pass through the queue. It’s a good
idea to understand the queue and how Postfix uses it in case you have to trouble-
shoot a problem.

The queue manager maintains five different queues: incoming, active, deferred, hold,
and corrupt. Postfix uses a separate directory for each queue below the path speci-
fied in the queue_directory parameter. By default the path is /var/spool/postfix, which
gives you a directory structure like the following:

/var/spool/postfix/active
/var/spool/postfix/bounce
/var/spool/postfix/corrupt
/var/spool/postfix/deferred
/var/spool/postfix/hold

The qmgr daemon running in the background handles most of the queue manage-
ment tasks automatically. The commands postsuper and postqueue are used by
administrators for manual queue management tasks. This chapter looks at how qmgr
and the command-line tools work, as well as Postfix parameters that affect the
queue.

How qmgr Works
Figure 5-1 illustrates how messages move through the queue. The incoming queue is
where messages first enter Postfix. The queue manager provides protection for the
queue filesystem through the queue_minfree parameter. The default value is 0. You
can make sure the disk that stores your queue doesn’t run out of space by setting a
limit.

* You may see references to nqmgr in older configuration files and documentation. Earlier Postfix versions
shipped with two queue manager daemons, qmgr and nqmgr. The original qmgr was replaced by the current
one, which has a better scheduling algorithm. nqmgr was the name of the current queue manager daemon
while it coexisted with the original. Once it was ready for promotion as sole queue manager for Postfix, it
was renamed qmgr.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

How qmgr Works | 59

From the incoming queue, the queue manager moves messages to the active queue
and invokes the appropriate delivery agent to handle them. For the most part, if
there are no problems with delivery, movement through the queue is so fast that you
won’t see messages in the queue. If Postfix is trying to deliver to a slow or unavail-
able SMTP server, you may see messages in the active queue. Postfix waits 30 sec-
onds to decide if a remote system is unreachable.

A message that cannot be delivered is placed in the deferred queue. Messages are
deferred only when they encounter a temporary problem in delivery, such as a tem-
porary DNS problem or when a destination mail server reports a temporary prob-
lem. Messages that are rejected, or encounter a permanent error, are immediately
bounced back to the sender in an error report and don’t stay in the queue.

Deferred Mail
Messages in the deferred queue stay there until they are either delivered successfully
or expire and are bounced back to the sender. The bounce_size_limit parameter
determines how much of a message that could not be delivered is bounced back to
the sender in the error report. The default is 50,000 bytes.

Once a message has failed delivery, Postfix marks it with a timestamp to indicate
when the next delivery attempt should occur. Postfix keeps a short-term list of sys-
tems that are down to avoid unnecessary delivery attempts. If there are deferred mes-
sages scheduled for a redelivery attempt, and there is space available in the active
queue, the queue manager alternates between taking messages from the deferred and
incoming queues, so that new messages are not forced to wait behind a large back-
log of deferred ones.

Queue Scheduling
Postfix periodically scans the queue to see if there are deferred messages whose
timestamps indicate they are ready for another delivery attempt. Subsequent failed
attempts at delivery cause scheduled delays to double, so Postfix waits longer each

Figure 5-1. Message movement in the queue.

Input agents

incoming active

deferred

postdrop

smtpd

Delivery agents

smtp

local

virtual

relay

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

60 | Chapter 5: Queue Management

time before it attempts to deliver a message. You can configure the maximum delay
with the maximal_queue_lifetime parameter. When the time has expired, Postfix
gives up trying to deliver the message and bounces it back to the sender. By default
the period is five days (5d). You can set it to any length of time, or to 0 to have unde-
liverable mail returned immediately.

Queue scans occur at an interval specified by the queue_run_delay parameter. By
default the parameter is set to 1,000 seconds (1000s). With this setting, every 1,000
seconds, Postfix checks the deferred queue to see if there are any messages due for
another delivery attempt.

The parameters minimal_backoff_time and maximal_backoff_time set minimum and
maximum time limits on how often Postfix attempts to redeliver deferred mes-
sages. Each time a message is deferred, the queue manager increases the amount of
time it waits to attempt to deliver that message again. The calculated increase of
time is never allowed to exceed maximal_backoff_time (default 4,000 seconds) and
is never less than minimal_backoff_time (default 1,000 seconds). If you find that
you have a large backlog of deferred messages, you may want to increase the
maximal_backoff_time so that Postfix doesn’t expend system resources in trying to
deliver messages to unavailable servers.

Message Delivery
The queue manager arranges for the delivery of messages by invoking the appropri-
ate delivery agent. Postfix is careful not to overwhelm destination systems and pro-
vides several parameters to control resources for outgoing messages. For most
situations the default settings are correct, but if you are experiencing resource prob-
lems or you are trying to optimize deliveries, you may want to experiment with the
queue manager configuration.

Outgoing messages might be delivered over any of the transports available in the
master.cf file. Each transport can have a limit on its total number of processes, speci-
fied in the maxproc column (see “master.cf”). If a value is not specified there, Postfix
uses default_process_limit for its limit.

The initial_destination_concurrency parameter limits the number of messages ini-
tially sent (default is five). You can increase the value, but it can’t go higher than the
maxproc value or default_process_limit for the transport used. After the initial deliv-
ery of messages, if there are more messages in the queue for a particular destination,
Postfix increases the number of concurrent delivery attempts, as long as it doesn’t
detect any problem from the destination system at the current load. Postfix contin-
ues to increase the number of simultaneous deliveries up to the number specified in
the default_destination_concurrency_limit parameter, which is 20 by default. In
general, you don’t want to increase the concurrency limit, or you risk overwhelming
the receiving system.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

How qmgr Works | 61

You can override the default_destination_concurrency_limit value for any trans-
port by setting a parameter of the form transport_destination_concurrency_limit.
For example, you can limit concurrent connections to external systems with the
parameter smtp_destination_concurrency_limit, or limit local deliveries with
local_destination_concurrency_limit.

There are also parameters of the form transport_destination_recipient_limit that
control how many recipients Postfix specifies for a single copy of an email message.
If a transport-specific parameter is not configured, it takes its default value from
default_destination_recipient_limit. If the number of recipients for a message
exceeds the limit, Postfix breaks up the list of recipients into smaller groups of
addresses and sends separate copies of the message to each group of addresses.

Corrupt Messages
The corrupt queue is simply used to store damaged or otherwise unreadable mes-
sages. If a message is too damaged to do anything with it, Postfix places it here. If
you want to investigate an issue, the problem message is available in this queue
where you can view it manually, if necessary. Corrupt messages are very rare. If you
have them, they may be a symptom of an underlying operating system or hardware
problem.

Error Notifications
Postfix can report certain errors by sending error messages to an administrator. Post-
fix classifies errors for notification, as shown in Table 5-1. The notify_classes
parameter in main.cf contains the list of error classes that should generate error
notices. By default the parameter includes “resource” and “software” errors.

Each class of error can be configured to send the notification to a particular email
address, using parameters of the form class_notice_recipient. By default they all go
to postmaster. Table 5-1 provides a list of possible error classes, along with the
parameters that indicate who should receive the error notices.

Table 5-1. Email error notices

Error class Description Notice recipient parameter

bounce Send headers for all bounced messages. bounce_notice_recipient

2bounce Send undeliverable bounced messages. 2bounce_notice_recipient

delay Send headers of delayed messages. delay_notice_recipient

policy Send the transcript of any SMTP transaction when a
message is rejected due to anti-spam restrictions.

error_notice_recipient

protocol Send the transcript of any SMTP transaction that had
errors.

error_notice_recipient

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

62 | Chapter 5: Queue Management

If you would like to receive all problem notices, set the parameter as follows:

notify_classes = bounce, 2bounce, delay, policy, protocol,
 resource, software

Queue Tools
Postfix provides command-line tools for displaying and managing the messages in
your queue. The primary commands are postsuper and postqueue. You can perform
the following tasks on messages in the queue:

• Listing messages

• Deleting messages

• Holding messages

• Requeuing messages

• Displaying messages

• Flushing messages

Each of the tasks, and the commands to accomplish them, are explained in the sec-
tions that follow.

Listing the Queue
The queue display contains an entry for each message that shows the message ID,
size, arrival time, sender, and recipient addresses. Deferred messages also include the
reason they could not be delivered. Messages in the active queue are marked with an
asterisk after the Queue ID. Messages in the hold queue are marked with an excla-
mation point. Deferred messages have no mark.

You can list all the messages in your queue with the postqueue -p command. Postfix
also provides the mailq command for compatibility with Sendmail. The Postfix
replacement for mailq produces the same output as postqueue -p.

A typical queue entry looks like the following:

$ postqueue -p
-Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------
DBA3F1A9 553 Mon May 5 14:42:15 kdent@example.com
 (connect to mail.ora.com[192.168.155.63]: Connection refused)
 kdent@ora.com

resource Send notice that a message could not be delivered
because of system resource problems.

error_notice_recipient

software Send notice that a message could not be delivered
because of software problems.

error_notice_recipient

Table 5-1. Email error notices (continued)

Error class Description Notice recipient parameter

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Queue Tools | 63

Since this entry is not marked with either an asterisk or an exclamation point, it is in
the deferred queue.

Deleting Messages
The postsuper command allows you to remove messages from the queue. To remove
the message in the sample entry displayed above, execute postsuper with the -d
option:

postsuper -d DBA3F1A9
postsuper: DBA3F1A9: removed
postsuper: Deleted: 1 message

If you have a lot of messages to remove, you can clear out your entire queue with the
ALL argument:

postsuper -d ALL
postsuper: Deleted: 23 messages

The ALL argument must be capitalized. Be very careful when using the command,
since it will delete all queued messages without asking any questions.

Rather than deleting all of the queued messages or just one at a time, frequently you
want to delete messages with a specific email address. Example 5-1 is a Perl script
that provides a convenient way to specify an email address to delete particular mes-
sages from the queue.

Example 5-1. Perl script to delete queued messages by email address

#!/usr/bin/perl -w
#
pfdel - deletes message containing specified address from
Postfix queue. Matches either sender or recipient address.
#
Usage: pfdel <email_address>
#

use strict;

Change these paths if necessary.
my $LISTQ = "/usr/sbin/postqueue -p";
my $POSTSUPER = "/usr/sbin/postsuper";

my $email_addr = "";
my $qid = "";
my $euid = $>;

if (@ARGV != 1) {
 die "Usage: pfdel <email_address>\n";
} else {
 $email_addr = $ARGV[0];
}

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

64 | Chapter 5: Queue Management

Holding Messages
The hold queue is available for messages you would like to keep in your queue indef-
initely. Figure 5-2 shows the hold queue and how you can move messages into the
hold queue where they will not be delivered until you specifically remove them or
move them back for normal queue processing. To place the example message into
the hold queue, use the postsuper command with the -h option:

postsuper -h DBA3F1A9

if ($euid != 0) {
 die "You must be root to delete queue files.\n";
}

open(QUEUE, "$LISTQ |") ||
 die "Can't get pipe to $LISTQ: $!\n";

my $entry = <QUEUE>; # skip single header line
$/ = ""; # Rest of queue entries print on
 # multiple lines.
while ($entry = <QUEUE>) {
 if ($entry =~ / $email_addr$/m) {
 ($qid) = split(/\s+/, $entry, 2);
 $qid =~ s/[*\!]//;
 next unless ($qid);

 #
 # Execute postsuper -d with the queue id.
 # postsuper provides feedback when it deletes
 # messages. Let its output go through.
 #
 if (system($POSTSUPER, "-d", $qid) != 0) {
 # If postsuper has a problem, bail.
 die "Error executing $POSTSUPER: error " .
 "code " . ($?/256) . "\n";
 }
 }
}
close(QUEUE);

if (! $qid) {
 die "No messages with the address <$email_addr> " .
 "found in queue.\n";
}

exit 0;

Example 5-1. Perl script to delete queued messages by email address (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Queue Tools | 65

The queue entry now contains an exclamation point to show that the message is on
hold:

-Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------
DBA3F1A9 ! 553 Mon May 5 14:42:15 kdent@example.com
 (connect to mail.ora.com[192.168.155.63]: Connection refused)
 kdent@ora.com

To move the message back into the normal queue for regular processing, execute the
command with a capital -H option instead:

postsuper -H DBA3F1A9

After the message is moved back, the queue manager marks it for redelivery accord-
ing to its normal scheduling, or you can flush the message to have it sent out imme-
diately (see “Flushing Messages”).

Requeuing Messages
If you have messages that were deferred because of a configuration problem that has
been corrected, you may have to requeue the messages to have them delivered suc-
cessfully. If the misconfiguration caused Postfix to store incorrect information about
the next hop or transport method, or to rewrite the address incorrectly, requeuing
causes Postfix to update the incorrect information based on your new configuration.
The postsuper command uses the -r option to requeue messages. You can specify a
queue ID for a single message, or the word ALL in capital letters to requeue everything:

postsuper -r ALL

Requeued messages get a new queue ID and an additional Received: header.

Displaying Messages
The postcat command displays the contents of a queue file:

postcat -q DBA3F1A9

Figure 5-2. Putting messages on hold

incoming active

deferredhold

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

66 | Chapter 5: Queue Management

Earlier versions of postcat did not support the -q option but required the full path to
the queue file. Since a message can be in any of the queue compartments (maildrop,
incoming, active, deferred, hold), and each of these has multiple subdirectories, the
path to a particular queue file is not immediately apparent. If you are using an ear-
lier version of postcat, which doesn’t support the -q option, you can create a shell
script like the one in Example 5-2 as a convenient way to view a queue file by speci-
fying only the queue ID. The script accepts one queue ID as an argument, checks all
of the queue directories to locate the queue file, and executes postcat with the full
path as its argument. The contents are then displayed. This simple script displays
only one queue file at a time.

Example 5-2. Shell script wrapper for postcat

#!/bin/sh

PATH=/usr/bin:/usr/sbin
QS="deferred active incoming maildrop hold"
QPATH=`postconf -h queue_directory`

if [$# -ne 1]; then
 echo "Usage: pfcat <queue id>"
 exit 1
fi

if [`whoami` != "root"]; then
 echo "You must be root to view queue files."
 exit 1
fi

if [! -d $QPATH]; then
 echo "Cannot locate queue directory $QPATH."
 exit 1
fi

for q in $QS
do
 FILE=`find $QPATH/$q -type f -name $1`
 if [-n "$FILE"]; then
 postcat $FILE
 exit 0
 fi
done

if [-z $FILE]; then
 echo "No such queue file $1"
 exit 1
fi

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Queue Tools | 67

Flushing Messages
Flushing the queue causes Postfix to attempt to deliver messages in the queue imme-
diately. You can flush queue messages with the postqueue -f command. However,
unless you have a reason to expect successful deliveries, it’s best to leave redelivery
attempts to the Postfix queue manager. Repeated attempts to flush the queue can
have a severe performance impact on your mail server.

You can flush messages destined for a particular site with the -s option. The site
must be eligible for fast flush in order for this to work. To be eligible, the site must be
listed in the fast_flush_domains parameter. By default, fast_flush_domains includes
all of the hosts listed in relay_domains, but you can add additional sites if you want
to flush them before the normally scheduled redelivery attempt.

fast_flush_domains = $relay_domains example.com

If you know that a previously unavailable, eligible site is ready to accept mail, exe-
cute postqueue with the -s option and name the site:

postqueue -s example.com

See Chapter 9 for more information about fast flush and the SMTP command ETRN.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

68

Chapter 6CHAPTER 6

Email and DNS

The Domain Name System (DNS) is a vast distributed database whose main job is to
map hostnames to IP addresses. It also has an important role in email routing. In this
chapter we’ll look at how MTAs in general use DNS and some of the DNS issues that
relate to Postfix and its configuration. Keep in mind that there are two important
aspects to your mail servers and DNS:

• For sending mail, the system running your Postfix mail server must have access
to a reliable DNS server to resolve hostnames and email-routing information.

• For receiving mail, your domains must be configured correctly to route mes-
sages to your mail server.

Misconfiguration of DNS servers is a common source of problems in setting up email
servers.

DNS Overview
At one time, hostname to IP address mapping was handled by one large, centrally
managed text file that contained an entry for every host accessible on the Internet.
Each site downloaded a copy of the file periodically to get the latest hostname infor-
mation. That scheme quickly became unwieldy, and the DNS service was con-
ceived. It was defined in RFC 882 in 1983, and introduced two key ideas: the data is
distributed and the naming of hosts is hierarchical. Making the data distributed
means that every site updates its own information, and the updates become avail-
able almost immediately. Hierarchical naming prevents hostname conflicts and gives
us the current domain-naming system that we are all very familiar with today. Each
site obtains at least one domain name, and all of the hosts at that site are named by
prefixing the simple hostname to the site’s domain name. For example, a site that
controls the domain name example.com might have any number of hosts with names
like server1.example.com, hp4100.example.com, or www.example.com.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Email Routing | 69

Each domain has at least two domain nameservers that are considered authoritative
for the domain. Authoritative nameservers should have direct access to the database
that contains all the information about a domain.

The data is comprised of different types of records called resource records. Different
resource records provide different kinds of information, such as IP addresses,
nameservers, hostname aliases, and mail routing. The resource records you need to
know about for this discussion are the following:

A
The mapping of names to IP addresses is handled by A records. These records
contain a hostname and its IP address. The names that people use to refer to
hosts have to be converted to IP addresses used for Internet routing. A records
provide this name-to-address translation.

CNAME
Some hostnames are aliases that point to other hostnames, rather than to IP
addresses. This can be useful for directing requests to services (such as HTTP or
POP) that might reside on systems generally known by a different name. The
CNAME record provides the “real,” or canonical, name that an alias hostname
points to. For example, an administrator might publicize the hostname www.
example.com, which is really a CNAME record pointing to server1.example.com
most of the time. But during periods of maintenance on server1.example.com, for
example, www.example.com could temporarily point to server2.example.com.

MX
MX records provide mail-routing information. They specify mail exchangers for
domains—that is, the names of the mail hubs that handle all the mail for a
domain name. The MX records tell MTAs where to send messages. Since a
domain can have multiple mail exchangers, MX records include a preference
value to designate the order of priority when selecting a mail exchanger to
deliver messages to.

PTR
PTR records provide a reverse lookup of IP addresses to hostnames. These
records normally match up with A records, so that forward lookups of host-
names return an IP address whose reverse lookup returns the hostname. How-
ever, many hostnames can point to the same IP address, so PTR records should
map back to the canonical name associated with the IP address. Some applica-
tions use PTR records as a form of authentication to make sure that a connect-
ing client’s IP address maps to the expected hostname.

Email Routing
Let’s consider for a moment one way that email routing might work. A user horatio
in the domain example.com has a workstation named denmark. He could receive mail
by using the email address horatio@denmark.example.com. An MTA with a message

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

70 | Chapter 6: Email and DNS

to deliver would simply look up the IP address for denmark.example.com and deliver it
to that system for the user horatio. This scenario requires that Horatio’s workstation
is always turned on, that it has a functional MTA running at all times to receive mes-
sages, and that it is accessible by unknown MTAs from anywhere on the Internet.
Rather than manage hundreds or thousands of MTAs on workstations and expose
them to the Internet, nearly all sites make use of mail hubs that receive all the mail
for a domain. MTAs such as Postfix need a way to determine which host or hosts are
the mail hubs for a domain. DNS MX records provide this information.

A mail exchanger either delivers mail it receives or forwards it to another mail sys-
tem. A domain may have multiple mail systems for reliability, and therefore multiple
MX records. Generally, one host is the primary mail server and the others serve as
backup or secondary mail servers. Each MX record in DNS contains a preference
value that orders mail systems from most preferred to least preferred.

BIND is one of the most common DNS server applications. (O’Reilly’s DNS and
BIND by Paul Albitz and Cricket Liu fully explains the DNS system and documents
the BIND software.) A simple BIND configuration file for the domain example.com
looks like the following:

example.com. IN SOA ns.example.com. kdent.example.com. (
 1049310513
 10800
 3600
 604800
 900)

;
; Nameservers
;
example.com. IN NS ns.example.com.

;
; Host Addresses
;
example.com. IN A 192.168.100.50
server1.example.com. IN A 192.168.100.220
ns.example.com. IN A 192.168.100.5
mail1.example.com. IN A 192.168.100.50
mail2.example.com. IN A 192.168.100.54
mail3.example.com. IN A 192.168.100.123

;
; Mail Exchangers
;
example.com. IN MX 10 mail1.example.com.
example.com. IN MX 20 mail2.example.com.
example.com. IN MX 30 mail3.example.com.

;
; CNAME Records

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Email Routing | 71

;
pop.example.com. IN CNAME mail1.example.com.
www.example.com. IN CNAME server1.example.com.

For this discussion, we’re primarily interested in the mail exchanger records:

example.com. IN MX 10 mail1.example.com.
example.com. IN MX 20 mail2.example.com.
example.com. IN MX 30 mail3.example.com.

The domain name is in the first column. The second column indicates that the
entries are Internet class records, and the third indicates that they are mail exchanger
resource records. The last column shows the mail exchanger host, and the second-to-
last column shows its preference value. Preference values can be any number
between 0 and 65,536, and a lower value indicates a more preferred host. The num-
bers are meaningful only in relation to each other and can be anything within the
allowed range. By convention, most administrators create priority values in multi-
ples of 10, which allows some flexibility for inserting or temporarily rearranging pref-
erences.

In our simple example above, mail1.example.com receives all the mail for the domain
example.com. In this case, all mail must eventually arrive at mail1.example.com.
When an MTA has to deliver a message to a user at the domain example.com, it
retrieves all of the MX records and sorts them in order of priority. It first attempts
delivery to mail1.example.com. If mail1.example.com is available and accepts the mes-
sage, the delivery is finished; however, if for some reason mail1.example.com is not
available to accept the message, the MTA continues down the list until it finds a mail
exchanger able to accept the message. If a secondary mail exchanger accepts a mes-
sage, it takes the responsibility of delivering it to a more preferred mail server (possi-
bly the primary) when the unavailable server comes back online.

If no MX records are found for a domain, an MTA checks to see if there is an A
record associated with the domain name itself. If there is an A record, the MTA
attempts delivery to the system at that IP address.

This mail-routing scheme seems simple enough, but it does get slightly more com-
plicated. Consider an example where the MTA on mail2.example.com receives a
message for ophelia@example.com. Presumably, mail1.example.com is offline, since
mail2 received the message. The MTA running on mail2.example.com gets the list
of mail exchangers for example.com, determines that the message should go to
mail1.example.com, and discovers that mail1 is not available. The next mail
exchanger on the list is itself. Delivery to itself doesn’t really make sense. So, the
next mail exchanger in line is mail3.example.com. The MTA could deliver the mes-
sage there, but mail3 will go through the same process and immediately try to hand
the message back to mail2, creating a mail loop. (MTAs actually resolve hostnames
to IP addresses for comparisons, since MX hosts might have multiple A records.
Postfix compares the IP address to its list of addresses in inet_interfaces and
proxy_interfaces.)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

72 | Chapter 6: Email and DNS

The solution is that when an MTA gets the list of mail exchangers and discovers
itself among them, it discards its own record plus all other mail exchangers with an
equal or less preferred priority (higher number). For our example, the host mail2
eliminates itself and mail3, thus reducing the list of mail exchangers to only mail1.
Since mail1 is not available and mail2 has no other options for delivery, it queues the
message and makes the delivery when mail1 comes back online.

In order for mail routing to work successfully, you should be very careful when set-
ting up MX records. In particular, you should observe the following rules for MX
records in your DNS configuration:

Mail exchangers must have valid A records. The mail exchanger pointed to by the
MX record must be a hostname with a valid A record. Once an MTA has deter-
mined which host should receive the mail, it has to be able to find that host.

Mail exchangers cannot be aliases. The host pointed to by an MX record should
not be an alias (CNAME record). Under normal circumstances, an MTA knows
itself by its canonical name and looks for that name when checking the list of
mail exchangers to prevent mail loops. The server must be able to find itself, so
make sure that you list the canonical name in the MX record, or you risk creat-
ing a mail loop. Even if an MTA accommodates CNAME records (by looking up
and using the canonical name), using them causes inefficiencies in mail delivery.

Use hostnames and not IP addresses for mail exchangers. List a hostname rather
than an IP address for mail exchangers. While you may get by with a bare IP
address, RFC 974 states that you must use a name of a host. Future changes
(IPv6, for example) might cause bare IP addresses to break mail routing.

Make sure that you specify preference values. Leaving out the preference value for
MX records may have different effects, depending on your DNS server and
MTA. At best, the problem creates ambiguity; at worst, it can prevent mail
delivery.

Postfix and DNS
When sending mail, Postfix uses system resolvers, which are programs or libraries
that make requests for DNS information. To receive mail, the DNS for your domain
must be configured to route messages to your Postfix server. This section looks at
DNS issues both for sending and receiving mail.

DNS and Sending Mail
The Postfix SMTP delivery agent must be able to obtain IP address and MX records
for mail-routing information. Postfix must make at least two DNS lookups: one to
get the MX hostname and one to get the IP address for that hostname. Since Postfix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix and DNS | 73

uses the normal operating system resolver libraries for its DNS queries, the system
that runs Postfix must have access to a DNS server. The DNS server does not have to
be on the same system, although for most circumstances it should be.

If your system does not seem to be resolving domain names correctly, there are three
common command-line tools that you can use to troubleshoot the problem:
nslookup, dig, and host. You should check your system documentation to see which
of these tools is available on your server and how to use them. You can use these
tools to query all types of resource records for a domain, including the MX record
that Postfix needs in order to successfully deliver mail to a domain.

DNS problems might stem from your own system’s configuration or a problem with
the DNS server configuration for the domain Postfix is trying to send mail to. When
you are troubleshooting a problem, it is very important to remember that Postfix first
looks for MX records and not A records. Even if you can resolve a domain to an IP
address, Postfix may not be able to deliver mail for that domain if there is a problem
in retrieving MX information.

Configuration options

When delivering mail, Postfix performs a DNS lookup to retrieve all of the MX
records for the destination domain. It sorts them in order of preference and tries each
one in priority order. Once Postfix has established a connection with an SMTP
server, the server replies to Postfix requests with a status code. Codes within the 2xx
range indicate that everything is okay. Error codes in the 4xx range indicate a tempo-
rary problem, and those in the 5xx range indicate a permanent problem. See
Chapter 2 for more information on SMTP reply codes.

To provide compatibility with Sendmail, Postfix, by default, treats SMTP servers
that respond with 4xx or 5xx reply codes as if the servers had not responded at all.
If you prefer that Postfix react to the error codes returned by the MX server rather
than ignore them, set the smtp_skip_5xx_greeting and smtp_skip_4xx_greeting
parameters:

smtp_skip_4xx_greeting = no
smtp_skip_5xx_greeting = no

If smtp_skip_4xx_greeting is set to no, and Postfix attempts delivery to a mail
exchanger that responds with a 4xx code, it does not try any more mail exchangers
for the destination domain. It queues the message and attempts delivery later.

If smtp_skip_5xx_greeting is set to no, and Postfix attempts delivery to a mail
exchanger that responds with a 5xx code, it does not try any more mail exchangers
for the destination domain. It bounces the message back to the sender.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

74 | Chapter 6: Email and DNS

Some domains have MX records set to equal preference values. By default, the Post-
fix SMTP client randomly shuffles MX addresses of equal preference. You can
change the default behavior by setting the smtp_randomize_addresses parameter:

smtp_randomize_addresses = no

Setting this parameter causes Postfix to attempt delivery to the MX servers in the
same order it retrieved them.

Reverse PTR records

Due to the prevalence of spam, many sites now require that connecting clients have
valid PTR records associated with their IP addresses. Your Postfix system’s IP
address should have a reverse PTR mapping to a hostname that returns the same IP
address to ensure that you can deliver to all mail servers.

DNS and Receiving Mail
For Postfix to accept email for a particular domain, the system must be specified as
an MX host in the domain’s DNS setup, and Postfix must be configured to accept
mail for the domain. Postfix accepts mail for domains that are either local to the sys-
tem, relay domains, or virtual domains. Virtual domains might use virtual aliases or
virtual mailboxes (see Chapter 8). Each type of domain must be listed in a different
Postfix parameter, as shown in Table 6-1.

Do not list a domain in more than one of the parameters. Postfix issues a warning if
it detects a domain listed in two of the parameters. The error message “mail for
example.com loops back to myself” occurs when the DNS configuration points to
your mail server, but Postfix has not been configured to accept mail for the domain.

If your Postfix server accepts mail for the two local domains example.com and
porcupine.org, then the mydestination parameter should look like the following in
your main.cf file:

mydestination = example.com, porcupine.org

Chapter 9 explains configuration of relay domains. Chapter 8 covers virtual mailbox
and virtual alias domains.

Table 6-1. Domain types and their parameters

Domain type Parameter

Local mydestination

Relay relay_domains

Virtual mailboxes virtual_mailbox_domains

Virtual aliases virtual_alias_domains

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Common Problems | 75

Common Problems
The following error messages in the mail log files indicate host lookup problems:

mail for domain loops back to myself
This is one of the most common errors related to DNS. It happens when you
have configured your Postfix server as an MX host in your DNS server, but you
have not told your Postfix server that it is the final destination for the domain.
Add the domain in question to the mydestination parameter, or configure it as a
virtual domain or a relay domain. If your Postfix server is behind a proxy or
NAT device, it may not realize that it is an MX host for the domain. In that case,
add the proxy device’s IP address to proxy_interfaces. Log entries for this error
resemble the following:

postfix/qmgr[3981]: 2CC3B229: from=<heloise@ora.com>, \
 size=306, nrcpt=1 (queue active)
postfix/smtp[3983]: warning: mailer loop: best MX host for \
 example.com is local
postfix/smtp[3983]: 2CC3B229: to=<abelard@example.com>, \
 relay=none, delay=0, status=bounced (mail for example.com \
 loops back to myself)

Host found but no data record of requested type
The domain’s DNS configuration has no MX records and there is no A record
for the domain itself. You will have to contact an administrator of the domain to
fix the problem. For your own domains, be sure they all include MX records
pointing to your mail server. Log entries for this error resemble the following:

postfix/qmgr[3818]: D31CD20F: from=<heloise@ora.com>, \
 size=312, nrcpt=1 (queue active)
postfix/smtp[3824]: D31CD20F: to=<abelard@example.com>, \
 relay=none, delay=1, status=bounced (Name service \
 error forname=example.com type=A: Host found but \
 no data record of requested type)

no MX host for domain has a valid A record
The domain’s DNS configuration has MX records, but lookups for the IP
addresses fail. You will have to contact an administrator of the domain to fix the
problem. For your own domains, be sure that any hosts you specify as MX hosts
are valid and have correct A records. Log entries for this error resemble the fol-
lowing:

postfix/qmgr[3818]: 068DB20F: from=<heloise@ora.com> \
 size=306, nrcpt=1 (queue active)
postfix/smtp[3846]: warning: no MX host for example.com has
 a valid A record
postfix/smtp[3846]: 068DB20F: to=<abelard@example.com> \
 relay=none, delay=1, status=deferred (Name service \
 error for name=mail.seaglass.com type=A: Host not found)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

76 | Chapter 6: Email and DNS

Host not found, try again
The DNS query produced no answer. Either the DNS server is not reachable, or
it is broken. Assuming the DNS server for this domain is up and working cor-
rectly, this error message could be due to a networking problem, or perhaps your
system’s resolver is misconfigured. Check over the documentation for the
nsswitch.conf and resolv.conf files on your platform. Be sure that your system is
resolving DNS queries correctly, using one of the tools mentioned earlier in the
chapter, before trying to troubleshoot the problem with Postfix. Log entries for
this error resemble the following:

postfix/qmgr[3818]: CCBED1E8: from=<heloise@ora.com> \
 size=306, nrcpt=1 (queue active)
postfix/smtp[3937]: CCBED1E8: to=<abelard@example.com> \
 relay=none, delay=1, status=deferred (Name service error \
 for name=example.com type=MX: Host not found, try again)

If you are running Postfix in a chrooted environment, there are several configura-
tion files related to DNS that must be within the chrooted compartment. See
Chapter 4 for more information on running Postfix within a chroot.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

77

Chapter 7 CHAPTER 7

Local Delivery and POP/IMAP

Chapter 1 explained that POP and IMAP are protocols that deal with how users
retrieve their email messages from message stores. Postfix is a mail transfer agent and
does not implement POP or IMAP. This chapter looks at how Postfix delivers mes-
sages and how they are read by POP/IMAP servers. There are many POP/IMAP servers
available, and the information presented here should be applicable to any standards-
conforming server. The last part of this chapter deals with configuring Postfix to work
with the Cyrus IMAP server. Before we look at local delivery, we’ll first discuss more
broadly the different delivery transports Postfix uses. Transports other than local are
discussed in subsequent chapters.

Postfix Delivery Transports
Postfix offers delivery for four different classes of recipient addresses: local, relay, vir-
tual alias, and virtual mailbox. How you configure the domains you accept mail for
determines the delivery method used by Postfix. The following are the delivery trans-
ports used by Postfix:

local
Delivers mail on the local system. Each address has an account on the system or
comes from the local aliases file (historically /etc/aliases). Delivered messages go
to the system’s mail spool or mail files in individual home directories. Deliveries
are handled by the local delivery agent or passed to a custom delivery program.
Lists local domains in the mydestination parameter.

relay
Delivers mail to other systems, usually on the same network. Relay domains are
generally configured on gateway systems when Postfix accepts mail for an entire
network. The gateway system relays messages to the correct internal mail sys-
tem. Deliveries are handled by the relay transport, which is simply a clone of the
smtp agent, but it is optimized for making deliveries to internal systems on a local
network. Lists relay domains in the relay_domains parameter. Mail relaying is
discussed in Chapter 9.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

78 | Chapter 7: Local Delivery and POP/IMAP

virtual
Delivers mail for virtual mailbox domains. Virtual mailbox domains are used for
hosting multiple domains using a separate mail spool that contains mailboxes
for many separate domains. Email users typically do not have system accounts
on the mail server. Lists virtual mailbox domains in the virtual_mailbox_domains
parameter. Virtual hosting is discussed in Chapter 8.

Deliveries to nonlocal domains are handled by the smtp transport. It determines
where to deliver messages for any nonlocal domain through DNS lookups. Virtual
alias addresses are resubmitted to Postfix for delivery to the new address, at which
point they’ll be handled by one of the above transports.

The rest of the chapter discusses the details of local delivery.

Message Store Formats
When Postfix makes local deliveries it transfers the contents of messages to the local
message store. The most common types of message stores are the traditional mbox
format and the newer maildir style. Both use regular files to store messages, but they
are structured in different ways. In Postfix, you specify maildir style by including a
trailing slash when you configure any mail file or directory parameters (see configu-
ration information later in this chapter).

The Mbox Format
Historically, Unix systems have used a single file to store each user’s email messages.
This type of message store format is commonly referred to as mbox. Each message
within the file starts with a line that begins with the word From. It is important that
the string start on the first character of the line, and that there is a space after the end
of the word. The From line is commonly referred to as From_ with an underscore
character to indicate the space following the word. Don’t confuse the From_ line used
for separating messages within an mbox file with the From: line included in email
message headers. The last line of a message is always a blank line.

A complete From_ line looks like the following:

From jmbrown@example.com Sun Feb 3 16:54:01 2002

As described, the line starts with the word From followed by a space. Following the
space is an email address that is usually the envelope address of the message. Follow-
ing the envelope address is the date of delivery in the common Unix date format
occupying 24 characters. The mbox format allows for an optional comment string
following the date, but it is generally not used.

When Postfix delivers a message to an mbox file, it first creates the From_ line using
the envelope sender and the current date. Postfix then copies the contents of the
delivered message into the mbox file. If Postfix encounters any lines that begin with

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Message Store Formats | 79

From followed by a space, it has to quote them by adding a > to the beginning of the
line, so that they won’t be confused with the start of the next message.

When a POP/IMAP server reads messages from the mbox file, it scans the file, look-
ing for From_ lines, which mark the beginning of each message. It can read to the next
From_ line (or the end of the file) to know when a message is finished. The POP/IMAP
server may unquote any of the “>From” quoted lines, or they may remain in the
quoted form.

Since both Postfix and the POP/IMAP servers access the mailbox file, they must use
file locking. Postfix must obtain an exclusive lock on the file when it is delivering a
message, so that it can write the message to the file. Postfix offers a variety of lock-
ing mechanisms, depending on the platform. You can use the postconf -l command
to see which mechanisms Postfix can use on your system:

$ postconf -l
flock
fcntl
dotlock

If you want more information about the locking types listed by Postfix on your sys-
tem, check your system’s man pages for the specific lock name:

$ man flock

The dotlock type, which should be available on all systems, is probably not docu-
mented on your system, because it is not a function of the operating system or sup-
porting libraries as flock and fcntl are. The dotlock is simply a file. The lock file
name is made up of the name of the file to be locked with a .lock extension
appended to it. If such a lock file exists, then Postfix knows that another process is
using the mail file. If the file does not exist, Postfix creates it to signal other pro-
cesses that it is using the file. When Postfix is finished, it removes the lock file, mak-
ing the mail file available again. The drawback of dotlock locking is that it is
susceptible to stale locks, and it is not very efficient.

For the most part, you do not need to worry about locking, and the lock types avail-
able, because Postfix does a good job of figuring out the best option.

The Maildir Format
The maildir mailbox format differs from mbox in that it uses a structure of directo-
ries to store email messages. It was designed to solve some of the reliability and lock-
ing problems of the mbox format. For example, if a system crashes at the instant an
email message is being delivered to an mbox file, it is possible that the message will
be truncated at the point where the delivery was interrupted. When the system
comes back online, the mail transport agent will attempt to deliver the message
again. The partially written message at the bottom of the mbox file may cause prob-
lems when the next message is appended to the file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

80 | Chapter 7: Local Delivery and POP/IMAP

Other problems can occur if a POP/IMAP server tries to access the mbox file at the
same time as the SMTP server. If the programs do not use the same locking mecha-
nism, the mail file will most likely be corrupted. There are several possible mail file
locking mechanisms (see above), which are not necessarily used by all mail pro-
grams. With the maildir format, no locks are necessary because each message gets its
own file. Different mail processes do not need access to the same files at the same
time.

A maildir-style directory has three subdirectories, which must all be on the same file-
system: tmp, new, and cur. These subdirectories are usually below a mail directory in
a user’s home directory:

$ ll /home/kdent/maildir
total 12
drwxr-x--- 2 kdent kdent 4096 Mar 13 12:24 cur
drwxr-x--- 2 kdent kdent 4096 Mar 13 12:24 new
drwxr-x--- 2 kdent kdent 4096 Mar 13 12:24 tmp

Files in the new directory are messages that have been delivered but have not yet
been read. The modification time of the file is the delivery date of the message. The
file usually contains the message in RFC 2822 format, and no From_ line is needed.

Once a message has been viewed, it is moved to the cur directory. The tmp directory
is used during message delivery to store the contents of a file before it can be con-
firmed to have been written to the new directory.

Mbox Versus Maildir
There is no simple answer to help you decide which type of mailbox format is best
for you. The mbox format has the advantage of being almost universally supported,
but has the file-locking problems that prompted the development of the maildir for-
mat. On the other hand, there are concerns about the ability of the maildir format to
scale to handle large numbers of messages on some filesystems. There are perfor-
mance arguments to support both formats: locating and accessing or deleting a par-
ticular message is probably quicker with maildir, but delivery by simply appending
the text of a message to the end of a single file is probably quicker in the mbox for-
mat. Your choice will most likely be driven by your selection of a POP/IMAP server.
If you settle on a POP/IMAP server that requires the maildir format, the choice is
made for you. Postfix easily supports either format, so you can safely allow other
considerations to drive your decision. If you think it will be significant in your envi-
ronment, you should run tests of both formats, simulating your own mail tasks as
closely as possible.

Local Delivery
All destination domains that should be handled by the local transport should be
listed in the mydestination parameter. You can list as many domains as you like, but

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Local Delivery | 81

individual local users receive mail at all of the domains listed. For example, if both
ora.com and oreilly.com are listed in mydestination, then messages to either
kdent@ora.com or kdent@oreilly.com go to the same local mailbox.

All local recipients should be listed in tables configured in the local_recipient_
maps parameter to avoid accepting messages for unknown users. By default,
local_recipient_maps is set to the system password file and alias maps, so you
normally don’t have to make any changes. Once Postfix has determined that it is
the final destination for a message, and that the message should be delivered
locally, it has to decide what to do with the message.

Before looking for a user account that matches the local part of the email address,
Postfix consults its alias maps (see Chapter 4). If there is a forwarding alias that
matches the recipient address, Postfix resubmits the message as a new delivery, based
on the forwarding information from the alias lookup. Otherwise, it tries to deliver the
message to a user on the system. Postfix first checks for the existence of a .forward file
for the local user, and may resubmit the message based on information there. If no .
forward exists for the user, Postfix delivers the message to the user’s mailbox.

.forward Files

.forward files allow local users to set up their own aliases. The contents of the .forward
file are the same as the righthand side of an alias entry. When an alias entry has multi-
ple values on the righthand side, they are separated by commas; while .forward files
use the same convention, they also allow multiple entries to be entered on multiple
lines.

.forward files must be owned by the recipient, and are normally found in users’ home
directories. You can specify different locations with the forward_path parameter.
When specifying a path for the parameter, there are eight variables whose values are
expanded at delivery time:

$user
Recipient username as specified in /etc/passwd

$home
Recipient home directory as specified in /etc/passwd

$shell
Recipient shell as specified in /etc/passwd

$recipient
The complete recipient email address

$extension
An optional extension of a local part of the recipient address, separated by a
delimiter such as the + character

$domain
Domain from the recipient email address

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

82 | Chapter 7: Local Delivery and POP/IMAP

$local
Complete local part of recipient email address (includes extensions if any)

$recipient_delimiter
Delimiter character from the recipient email address, if there is an extension

If you want to add support for a nonstandard .forward file, you could configure
forward_path as follows:

forward_path = /home/$user/.forward /home/$user/other_forward

See the Postfix local manpage for more information on specifying paths with vari-
able expansion.

Alias Deliveries
When Postfix delivers to a command or file specified in alias files, it makes the deliv-
ery or executes the command as the user who owns the alias file. The exception is
when the file is owned by root, in which case Postfix uses the account specified in
the default_privs parameter. By default it is set to the account nobody. Aliases are
discussed in Chapter 4.

Mailbox Delivery
When Postfix delivers a message to a local user, it writes the message to the system’s
message store. By default Postfix uses the mbox format for deliveries. When you
install Postfix, it can normally figure out the default location of the mail spool direc-
tory depending on the type of Unix system you have. The mail_spool_directory
parameter can be used to specify a directory other than the default. To change the
directory to something other than the default for your system, edit the main.cf file,
and add or modify the mail_spool_directory parameter:

mail_spool_directory = /var/spool/mail

To cause Postfix to use the maildir format for delivery, append the directory with a
trailing slash:

mail_spool_directory = /var/spool/mail/

Postfix can also be configured to deliver messages to mailboxes within users’ home
directories. Assign a relative path to the home_mailbox parameter to indicate which
file should be used for mailboxes:

home_mailbox = mbox

Append the path with a trailing slash to indicate that Postfix should use the maildir-
style delivery:

home_mailbox = maildir/

This causes Postfix to deliver messages into a directory called maildir, below users’
home directories.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

POP and IMAP | 83

With maildir-style delivery, Postfix normally creates the necessary
directories and files, if the user’s credentials permit it; however, as a
security precaution, if the parent directory is world-writable, Postfix
delivery agents will not create any additional files or directories.

POP and IMAP
After Postfix has delivered a message, users need a way to read it. Many sites provide
a POP/IMAP server for users to retrieve their email messages over the network. In
most cases Postfix works seamlessly with POP/IMAP servers, so that no special con-
figuration is required on either side.

POP Versus IMAP
The POP protocol works best when you have limited, or less than full-time, network
access because it allows you to connect to your mail server, fetch all of your mes-
sages, and disconnect from the network. You now have local copies that you can
read offline. Most POP clients have a configuration option to delete your messages
from the server when you retrieve them, since you then have the local copies. If you
don’t delete them at some time, the messages accumulate, taking up more and more
space on your mail server. POP was designed to be easy to implement, but the major
problem with the POP protocol is that if you ever work from more than one com-
puter, your messages may not be where you need them. It also does not handle mul-
tiple mailboxes very well, and it forces you to download complete messages. There is
no option to retrieve just the subject, for example, to decide if you want the com-
plete message.

The IMAP protocol was designed to overcome some of POP’s shortcomings. It keeps
all messages on the server. You have to be connected while working with your email
messages, but you can manage them as if they were local. Since everything happens
on the server, it doesn’t matter if you work from your desktop computer at home,
another machine at work, and even on a laptop while traveling. IMAP still allows for
saving messages locally, if necessary, and it also provides much more flexibility than
POP. You can download just the headers from your messages and then decide to
retrieve the rest of a message if you want to read it. You don’t have to be stuck down-
loading a huge message or attachment that you might not be interested in. You can
maintain multiple mailboxes and folders on the IMAP server.

Postfix and POP/IMAP Servers
The cooperation between Postfix and POP/IMAP servers is simple. When Postfix
accepts delivery of an email message, it places it in the message store. The POP/IMAP
server simply retrieves messages from the same store when a user requests them.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

84 | Chapter 7: Local Delivery and POP/IMAP

Figure 7-1 shows how simple the cooperation is between Postfix and POP/IMAP serv-
ers. Postfix and the POP/IMAP server must agree on the type of mailbox format and
the style of locking. Postfix should work with any standards-compliant POP/IMAP
server that uses one of the traditional message stores. You may have to adjust the
mail_spool_directory parameter, as described earlier in the chapter, but for most
POP/IMAP servers, you can simply follow the standard installation instructions and
start the server. For POP/IMAP servers that don’t use a traditional message store,
Postfix can still deliver messages using the Local Mail Transfer Protocol, which is dis-
cussed in the next section.

Local Mail Transfer Protocol
Some POP/IMAP servers use nonstandard message stores. Since it would be unrea-
sonable to expect MTAs such as Postfix to understand many different proprietary
formats, the Local Mail Transfer Protocol (LMTP) provides a way to pass email mes-
sages from one local mail service to another without depending on a common mes-
sage store. LMTP is based on, and is a simplified version of, SMTP. With LMTP, the
server can either accept an email message immediately or it cannot accept it at all.
There is no attempt by the LMTP server to queue or redeliver a message that cannot
be delivered immediately.

When an MTA makes a delivery to an SMTP server, where the message is destined
for multiple recipients, and one or more recipients cannot accept the message for
some reason, the SMTP server takes the responsibility of queuing the message to
deliver it later, and reports an overall successful delivery to the MTA. LMTP servers
do not queue messages, so they must return an individual status reply for every recip-
ient of a particular email message. For those recipients that could not be delivered,
the MTA, and not the LMTP server, takes the responsibility of queuing the message
and attempting redelivery.

LMTP conversations can occur between mail subsystems on the same machine or on
different machines on a local area network. It is not recommended for wide area net-
works, since the protocol depends on a quick response to indicate whether the mes-
sage was delivered. With SMTP there is a recognized synchronization problem

Figure 7-1. Postfix and POP/IMAP servers

Email server

POP/IMAPPostfix

Message
store

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Local Mail Transfer Protocol | 85

between sending and receiving mail systems that sometimes causes duplicate mes-
sages to be delivered. It is believed that LMTP over wide area networks would make
the problem worse.

Apart from delivery to nonstandard message stores, a real benefit of
the LMTP protocol is that it allows for a highly scalable and reliable
mail system. One or more Postfix servers can receive mail from the
public Internet and make deliveries to multiple LMTP backend sys-
tems. As the load increases, it is a simple matter to add more boxes to
the front- or backend systems.

The most common implementation of LMTP delivery is the Cyrus IMAP server from
Carnegie Mellon University. It is available from the Project Cyrus web page at http://
asg.web.cmu.edu/cyrus/. Cyrus IMAP uses its own message store, as shown in
Figure 7-2. This section looks at how Postfix can use the LMTP protocol to hand off
messages to Cyrus IMAP. For more information about configuring Cyrus IMAP, see
Managing IMAP by Dianna Mullet and Kevin Mullet (O’Reilly).

Postfix and Cyrus IMAP
Cyrus IMAP is intended to run on servers that provide POP/IMAP access only, where
users do not need a shell account. If you are creating a mail server for existing users
on a system, you will probably want to use another simpler POP/IMAP solution,
such as Qualcomm’s Qpopper (POP access only) or the University of Washington’s
IMAP Toolkit, which doesn’t require any special configuration to work with Postfix.
This section deals with configuration issues for getting Postfix to work together with
Cyrus IMAP.

Cyrus IMAP can listen for LMTP deliveries using either Unix-domain sockets or TCP
sockets. You must know which method you are using so that you can configure Post-
fix appropriately. If you want to use Unix-domain sockets, both Postfix and the
Cyrus IMAP server must be on the same machine. If you use TCP sockets, the Cyrus
IMAP server could be on the same system or any other system on your network.
LMTP delivery is configured in your main.cf file or in a transport map.

Figure 7-2. Postfix and Cyrus IMAP

Email server

Postfix

Message
store

Cyrus IMAP

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

86 | Chapter 7: Local Delivery and POP/IMAP

For Postfix to accept messages to be delivered locally to Cyrus IMAP, the destina-
tion domain name of the email address must be listed in the mydestination parame-
ter. (You may also want to configure Cyrus deliveries via the virtual transport. See
Chapter 8.) Then you must configure Postfix to pass messages to Cyrus IMAP. Use
the mailbox_transport, local_transport, or fallback_transport parameter to tell
Postfix how much local processing to do before handing off messages to Cyrus. If
you are using local_transport or fallback_transport, make sure that Postfix knows
about all of the Cyrus users, by including the usernames in a lookup table listed with
the local_recipient_maps parameter.

mailbox_transport
The mail message is given to the local delivery agent first. The local delivery
agent checks for and expands any aliases or entries in .forward files. After expan-
sion of the original address, the message is delegated to the Postfix LMTP client,
which delivers it to the LMTP server.

local_transport
When you specify that the local transport should be LMTP, Postfix transfers the
message directly to the Postfix LMTP client. The normal local delivery agent does
not process the message at all, so there is no expansion of aliases or .forward files.

fallback_transport
When the fallback transport is LMTP, Postfix gives the message to its local deliv-
ery agent first. The normal aliases and .forward files are expanded, and if the
recipient has a normal account on the system, delivery is made to the appropri-
ate mail store on the system. If no such account exists, delivery is delegated to
the Postfix LMTP client for delivery to the LMTP server. If you have actual
accounts on the system that should receive email messages in the conventional
message store, and the rest of your email users do not have system accounts but
do receive mail through the Cyrus IMAP server, you should configure the
fallback_transport to use LMTP delivery.

Specify your chosen transport type using the following format:

xxx_transport = service:socket_type[:/path/to/socket]

For LMTP delivery, service must be lmtp, which refers to the lmtp service in the /etc/
postfix/master.cf file. The socket_type is either unix or inet for Unix domain, or TCP
sockets, respectively. The default is inet, which means that if your LMTP server uses
an inet socket, you can simply specify the service as:

local_transport = lmtp

A typical LMTP transport configuration in /etc/postfix/main.cf using local_transport
and a Unix domain socket looks like the following:

local_transport = lmtp:unix:/var/imap/socket/lmtp

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Local Mail Transfer Protocol | 87

A Postfix and Cyrus IMAP Example
To build Cyrus IMAP, you need the Cyrus SASL library, which is used to authenti-
cate users for the IMAP server.* You must first build and install the Cyrus SASL
library, and then you can build the Cyrus IMAP server. The Cyrus software requires
at least Version 3 of Berkeley DB. If you were using a version of Berkeley DB prior to
Version 3, you may need to update your entire system. Having different versions of
Berkeley DB intermixed on your system will likely lead to problems that can be diffi-
cult to track down. If you have to upgrade your libraries, consider rebuilding other
packages that use Berkeley DB (such as Perl and Postfix), so that everything on your
system uses the same version of the library.

Follow the instructions in the Cyrus SASL and IMAP distributions to compile and
install them correctly on your system. There might be binary distributions available
for your platform. Check your normal software sources to see if you can save your-
self the trouble of building the Cyrus software.

For this example, assume that you have a Postfix server receiving mail for the
domain example.com. All of the email accounts are set up within the Cyrus IMAP
server running on the same system, so there are very few actual login accounts on
the system. However, you want mail destined for the root account or postmaster
alias to be sent to the correct person, which means that you need to expand local
aliases before handing off messages to the Cyrus IMAP server. To achieve this, set
the mailbox_transport parameter to point to the lmtp delivery agent, which will be
configured to deliver mail to the Cyrus IMAP server:

1. Complete the installation and configuration of Cyrus IMAP on your system.
Check the Cyrus configuration file (normally /etc/cyrus.conf) to make sure that it
is configured to use Unix-domain sockets, and note the location of the socket
file. You should see an entry that resembles the following:

SERVICES {
 # add or remove based on preferences
 imap cmd="imapd" listen="imap" prefork=0
 pop3 cmd="pop3d" listen="pop3" prefork=0
 # LMTP is required for delivery
 lmtpunix cmd="lmtpd" listen="/var/imap/socket/lmtp" prefork=0
}

The lmtpunix entry shows the correct path to the socket file.

2. Follow the documentation that came with your package to add users to your
Cyrus IMAP server.

3. Check the /etc/postfix/master.cf to make sure that the lmtp service is set up cor-
rectly. The line should look like the following:

lmtp unix - - n - - lmtp

* It is the same library that is used to add authentication support for Postfix. See Chapter 12 for more infor-
mation on adding SMTP authentication support to Postfix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

88 | Chapter 7: Local Delivery and POP/IMAP

If you have a default Postfix installation, the lmtp line will already be in the file,
as shown in the example. The fifth column indicates whether the LMTP delivery
agent should run within a chrooted environment. In this example, the Postfix
LMTP delivery agent must read the socket file created by the Cyrus IMAP server,
so leave this column with the value n.*

4. Check the main.cf file to make sure that the domain you are receiving mail for is
listed in the mydestination parameter. It might be listed explicitly:

mydestination = $myhostname, localhost.$mydomain, $mydomain,
 example.com

or it might come from the $mydomain variable:
mydomain = example.com
mydestination = $myhostname, localhost.$mydomain, $mydomain

5. Specify that the mailbox_transport parameter should use the lmtp service from
the master.cf file, and point to the Cyrus IMAP socket file whose path you deter-
mined from the Cyrus configuration file (see item 1):

mailbox_transport = lmtp:unix:/var/imap/socket/lmtp

6. Reload Postfix:
postfix reload

* It is possible to set up your system in such a way that allows the LMTP delivery agent to read the socket file
even from within the Postfix chroot environment, but it is probably not necessary.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

89

Chapter 8 CHAPTER 8

Hosting Multiple Domains

It is very common these days for a single system to host many domains. For instance,
oreillynet.com and onlamp.com might run on a single host, but act as if they were two
totally different hosts. A system usually has a canonical domain, which is considered
its usual or common domain name. Additional domains are configured as virtual
domains. Each virtual domain can host services such as web sites and email as if it
were the only domain on a server. This chapter explains several different mecha-
nisms for hosting multiple domains. The techniques are explained separately, but it
is possible to mix techniques if you must handle different domains in different ways.

To determine which technique or techniques you need, you must decide how Post-
fix should deliver messages for virtual domains. There are two important consider-
ations that influence how you should configure Postfix for hosting multiple domains:

• Should your domains have separate namespaces? For example, should mail for
the two addresses info@ora.com and info@oreilly.com go to the same mailbox or
separate ones? We’ll refer to the same mailbox scenario as shared domains, and
the other as separate domains.

• Does every user require a system account? We’ll make the distinction between
system accounts that are real Unix accounts on your system and virtual
accounts. With virtual accounts, users can have mailboxes on your server, but
don’t otherwise log in to the system and don’t require an entry in /etc/passwd.

We’ll consider four different ways Postfix can handle mail for virtual domains:

• Shared domains with system accounts

• Separate domains with system accounts

• Separate domains with virtual accounts

• Virtual domains with a proprietary message store not managed by Postfix

Your POP/IMAP server will be a major factor in deciding which technique you need.
If your POP/IMAP server does not understand virtual domains, then it will most likely
require that you have system accounts for all addresses. Some POP/IMAP servers

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

90 | Chapter 8: Hosting Multiple Domains

inherently support multiple domains, and deliver messages into a particular directory
structure on the local filesystem. Other POP/IMAP servers use their own proprietary
message store. Postfix can hand off messages to them using LMTP.

Regardless of the technique you use, all of your virtual domains must be configured
correctly in DNS. You should configure DNS for virtual domains the same way you
do for your system’s canonical domain. See Chapter 6 for information on Postfix and
DNS.

Shared Domains with System Accounts
Accepting mail for multiple domains where every user can receive mail for every
domain is the simplest configuration of virtual domains. Simply add your virtual
domains to the mydestination parameter. Create user accounts as you normally
would, and they can start receiving mail addressed to any of the domains. This tech-
nique uses the local delivery agent, providing all of the same features as your normal
canonical domain hosting. Users can create their own .forward files, and local aliases
are available. On a system whose canonical name is oreillynet.com, hosting two vir-
tual domains, ora.com and oreilly.com, the mydomain parameter is set as if oreillynet.
com were the only domain, and mydestination is set as follows:

mydomain = oreillynet.com
mydestination = $myhostname, $mydomain, ora.com, oreilly.com

Make sure you reload Postfix after making changes. Users can now receive mail at
any of the domains you listed in mydestination:

postfix reload

Messages addressed to either info@ora.com or info@oreilly.com all go to the same
local user account.

Separate Domains with System Accounts
If you require separate namespaces for each of your virtual domains, the configuration is
only slightly more complicated. With separate domains, mail to info@ora.com should
go to a different mailbox than mail to info@oreilly.com. In this case, do not list the addi-
tional domains in the mydestination parameter. Instead, use virtual_alias_domains:

virtual_alias_domains = ora.com, oreilly.com

You must create a user account for every email address that will receive messages on
your system. Your system accounts do not have to match the email addresses in any
way, since you will be mapping the addresses to the accounts separately, but each
account must be unique. If your platform supports long usernames, a good way to
create unique account names, and to avoid confusion about which accounts are
meant to receive mail at which domains, is to use the domain name itself as part of

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Separate Domains with Virtual Accounts | 91

the account name. One possible naming convention is to create accounts such as
info.ora.com and info.oreilly.com.

Once Postfix knows which domains to accept mail for, and you have accounts for
each address, use virtual_alias_maps to map the email addresses to the accounts
you create. In main.cf, point the virtual_alias_maps parameter to the virtual alias
lookup file. In this example, the file /etc/postfix/virtual_alias is used:

virtual_alias_maps = hash:/etc/postfix/virtual_alias

The /etc/postfix/virtual_alias file contains entries with the email addresses pointing to
the system accounts you created, plus any non-local forwarding you need:

info@ora.com helene@localhost
info@oreilly.com frank@localhost
kdent@oreilly.com kyle.dent@onlamp.com

Whenever you create or update a virtual aliases file, don’t forget to execute the
postmap command on the file:

postmap virtual_alias

If helene and frank plan to send messages from the system, you may also want to set
up canonical maps so that their outbound messages show the correct sending
addresses. Assign a lookup table like the following to canonical_maps:

helene info@ora.com
frank info@oreilly.com

And remember to execute postmap against the file:

postmap canonical

Separate Domains with Virtual Accounts
The drawback for the techniques so far is that you must maintain system accounts
for all email addresses on your server. As the number of domains you host increases,
so does the effort to maintain all the accounts. In particular, if users only receive
email at your server, and don’t otherwise log in, you probably don’t want to have to
create system accounts for each one. Instead, configure Postfix to deliver to a local
message store where each virtual email address can have its own mailbox file. Your
users then retrieve their messages through a POP/IMAP server.

The local message store works much like normal local delivery, but it doesn’t require
a one-to-one correspondence between each mail file and a local user account. For this
configuration, list each virtual domain in the virtual_mailbox_domains parameter:

virtual_mailbox_domains = ora.com, oreilly.com

If you have many domains, you can list them in a file and point virtual_mailbox_domains
to the file:

virtual_mailbox_domains = /etc/postfix/virtual_domains

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

92 | Chapter 8: Hosting Multiple Domains

The file /etc/postfix/virtual_domains then contains a line for each domain:

#
/etc/postfix/virtual_domains
#
ora.com
oreilly.com

Virtual domains listed in virtual_mailbox_domains are delivered by the virtual deliv-
ery agent, which is actually a streamlined version of the local delivery agent. It makes
deliveries in a highly secure and efficient manner, but local aliases, .forward files, and
mailing list programs are not available. You can make use of the virtual_alias_maps
parameter that you saw earlier in the chapter to accomplish aliasing, and we’ll look
at a technique to accomplish delivery to programs later in this chapter.

When setting up the virtual mailboxes, you should structure the directories to
accommodate the expectations of your POP/IMAP server. Let’s assume for this
explanation that the virtual mailboxes are all located below the base directory /usr/
local/vmail. Each virtual domain has its own subdirectory below that, so that you
have directories like the following:

/usr/local/vmail/ora.com
/usr/local/vmail/oreilly.com

This is a common configuration for POP/IMAP servers that support virtual hosting.
Below each domain subdirectory are the mail files for each user. Indicate to Postfix
the base directory of the mail store with the virtual_mailbox_base parameter:

virtual_mailbox_base = /usr/local/vmail

You must create a lookup file that maps email addresses to their mailbox files. Spec-
ify the lookup table with the virtual_mailbox_maps parameter:

virtual_mailbox_maps = hash:/etc/postfix/virtual

Every user receiving mail to a virtual mailbox file must have an entry in a Postfix
lookup table. The mailbox file is specified relative to virtual_mailbox_base. Mail files
can use either mbox or maildir format (see Chapter 7). To use maildir format,
include a slash at the end of the filename. A virtual mailbox map file looks like the
following:

info@ora.com ora.com/info
info@oreilly.com oreilly.com/info

The email address info@ora.com goes to a different mailbox from the address
info@oreilly.com.

Mailbox File Ownership
The virtual mailbox files must be owned by a user account and associated with a
group on your system. How your users retrieve their messages determines what the
ownership of mailbox files should be. Often, your POP/IMAP server executes under

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Separate Domains with Virtual Accounts | 93

its own account and expects all of the mailbox files to be owned by this user, but if
necessary, Postfix lets you configure ownership for mailbox files in any way you
need. Each can be owned by a separate user, or one user can own all of the mail-
boxes for one domain, while a different user owns the mailboxes of another.

The virtual_uid_maps and virtual_gid_maps parameters determine the owner and
group Postfix uses when making deliveries to virtual mailbox files. You can specify
that all of the virtual mailboxes should be owned by the same user account with the
static map type. Assume, for this example, that you have created an account called
vmail that has a UID of 1003, and a group called vmail that has a GID of 1005. You
want all of the virtual mailbox files to be owned by this user and group.

Set the virtual_uid_maps and virtual_gid_maps parameters in main.cf:

virtual_uid_maps = static:1003
virtual_gid_maps = static:1005

If you want to use different UIDs for different mailbox files, you must create a
lookup file that maps the addresses to the UIDs. Then point the mapping parameter
to your lookup file:

virtual_uid_maps = hash:/etc/postfix/virtual_uids

If most of your virtual mailboxes should have the same fixed ownership but some
require different UIDs, you can combine static and table lookups:

virtual_uid_maps = hash:/etc/postfix/virtual_uids static:1003

If you also need separate group mappings, they work exactly the same way.

The file /etc/postfix/virtual_uids contains entries like the following, with each address
mapped to the correct UID. In this case, the mailboxes for ora.com use one ID and
those for oreilly.com use another:

#
/etc/postfix/virtual_uids
#
info@ora.com 1004
kdent@ora.com 1004
info@oreilly.com 1007
service@oreilly.com 1007

Virtual Aliases
It is possible for a virtually hosted domain to have some addresses that are delivered
to the local message store and some that are forwarded. Since all recipient addresses
are checked for virtual aliasing regardless of their class, simply place the forwarded
addresses in the virtual_alias_maps file instead of the virtual_mailbox_maps file.
Make sure the virtual_alias_maps parameter points to a virtual alias lookup table:

virtual_alias_maps = hash:/etc/postfix/virtual_alias

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

94 | Chapter 8: Hosting Multiple Domains

The /etc/postfix/virtual_alias file contains entries for addresses that should be for-
warded elsewhere:

kdent@oreilly.com kyle.dent@onlamp.com

Do not list a domain in both virtual_mailbox_domains and virtual_alias_domains.
Use virtual_mailbox_domains for domains that have a mix of aliases and mailboxes
and virtual_alias_domains only when all of the addresses are aliases.

Catchall Addresses
For either virtual mailboxes or virtual aliases, your lookup table can have a key value
of the domain without a local part to catch any message destined for the domain
addressed to a nonexistent address. Catchall addresses should be used advisedly, since
they tend to receive a lot of spam. Spammers often send messages to nonexistent
accounts at a domain, which are received by catchall addresses.

Virtual mailbox catchall

The first step is to identify a mailbox to receive messages sent to nonexistent
addresses. You can use an existing mailbox or create a new one. Add a new
virtual_mailbox_maps entry like the following to deliver any message with an
unknown destination address to the service mailbox:

@ora.com ora.com/service

Virtual alias catchall

Catchall addresses with virtual aliases work similarly to virtual mailboxes, but you
should set up a catchall alias address only if all addresses in a domain are configured
as aliases and not mailboxes. Since virtual aliases are checked before virtual mail-
boxes, a catchall alias intercepts all messages, including those otherwise destined for
virtual mailbox addresses. Once you’ve identified the address that should receive
messages sent to nonexistent addresses, add a new virtual_alias_maps entry like the
following:

@ora.com customer.service@onlamp.com

It’s possible to have a virtual alias catchall address in conjunction with virtual mailbox
addresses by creating entries for all of your virtual mailbox addresses in your virtual
alias lookup maps. Assuming you have virtual mailboxes configured like the following:

info@ora.com ora.com/info
info@oreilly.com oreilly.com/info

your virtual alias lookup table that includes a catchall alias must also contain the
mailbox entries:

@ora.com customer.service@onlamp.com
kdent@oreilly.com kyle.dent@onlamp.com
info@ora.com info@ora.com
info@oreilly.com info@oreilly.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivery to Commands | 95

In this way, a message addressed to info@ora.com won’t be intercepted by the @ora.
com catchall alias.

Separate Message Store
The last configuration we’ll consider is hosting virtual domains with a system using
a proprietary message store. To work with these systems, Postfix hands off messages
using a protocol like LMTP, letting the proprietary system handle delivery to the
correct mail box.

Since Postfix must receive messages before handing them off to the LMTP server, it
has to know that it should accept mail for each of the virtual domains. List them in
virtual_mailbox_domains:

virtual_mailbox_domains = ora.com, oreilly.com

You also have to list each email address, so Postfix can accept messages for valid
addresses and reject unknown users. Use the virtual_mailbox_maps parameter to
point to a lookup file with valid addresses:

virtual_mailbox_maps = hash:/etc/postfix/virtual

In the /etc/postfix/virtual file, the righthand value isn’t used because all messages are
passed along to the POP/IMAP server. You must still include a righthand value
because lookup tables must have a key and a value, but the value you use doesn’t
matter:

info@ora.com General Information Address
info@oreilly.com General Information Address

In order to have Postfix pass mail for virtual domains through to your POP/IMAP
server, specify the correct transport in the virtual_transport parameter in main.cf.
You have to know how your LMTP server socket is set up. Assuming it’s on the same
host as Postfix and uses a socket file located at /var/imap/socket/lmtp, the transport
lookup table for the example domains looks like the following:

virtual_transport = lmtp:unix:/var/imap/socket/lmtp

This causes all of your virtual_mailbox_domains to be delivered to your POP/IMAP
server over LMTP.

Delivery to Commands
As mentioned earlier in the chapter, you can’t use local aliases, .forward files, and
mailing-list programs with virtual domains delivered by the virtual delivery agent.
You’ve seen that you can easily set up aliases through the virtual_alias_maps param-
eter, but you cannot deliver messages to a command. In this last section, we’ll look
at working around that issue by demonstrating how to deliver virtual addresses to
external programs. The first example sets up delivery to an autoreply program, and
the second to a mailing-list manager.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

96 | Chapter 8: Hosting Multiple Domains

Auto-responders are scripts or programs that process incoming messages and return
a reply to the sender of the message without any human intervention. The autoreply
program used in this example, inforeply.pl, is listed in Example 8-1. This program
is meant to handle mail for a dedicated information email address. Users or custom-
ers can send a message to the address to request special information. Note that this
simple example is inadequate as a general autoreply program, such as the Unix
vacation command. It does not cache addresses it has already replied to, and it does
not do full checking for addresses that should not receive automatic replies (see the
sidebar). You might also like to enhance the program to return different types of
information, based on the subject or a keyword in the body of the request messages.

Example 8-1. Simple automatic reply program

#!/usr/bin/perl -w
#
inforeply.pl - Automatic email reply.
#
All messages are logged to your mail log. Check the
log after executing the script to see the results.
#
Set $UID to the uid of the process that runs the script.
Check the entry in master.cf that calls this script. Use
the uid of the account you assign to the user= attribute.
If you want to test the script from the command line,
set $UID to your own uid.
#
Set $ENV_FROM to the envelope FROM address you want on
outgoing replies. By default it's blank, which will
use the NULL sender address <>. You can set it to an
address to receive bounces, but make sure you don't set
it to the same address that invokes the program, or
you'll create a mail loop.
#
Point $INFOFILE to a text file that contains the text of
the outgoing reply. Include any headers you want in the
message such as Subject: and From:. The To: header is
set automatically based on the sender’s address. Make
sure you have an empty line between your headers and the
body of the message.
#
If necessary, change the path to sendmail in $MAILBIN.
#
@MAILOPTS contains options to sendmail. Make changes if
necessary. The default options should work in most
situations.
#
The calls to syslog require that your Perl installation
converted the necessary header files. See h2ph in your
Perl distribution.
#

require 5.004; # for setlogsock in Sys::Syslog module

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivery to Commands | 97

use strict;
use Sys::Syslog qw(:DEFAULT setlogsock);

#
Config options. Set these according to your needs.
#
my $UID = 500;
my $ENV_FROM = "";
my $INFOFILE = "/home/autoresp/inforeply.txt";
my $MAILBIN = "/usr/sbin/sendmail";
my @MAILOPTS = ("-oi", "-tr", "$ENV_FROM");
my $SELF = "inforeply.pl";
#
end of config options

my $EX_TEMPFAIL = 75;
my $EX_UNAVAILABLE = 69;
my $EX_OK = 0;
my $sender;
my $euid = $>;

$SIG{PIPE} = \&PipeHandler;
$ENV{PATH} = "/bin:/usr/bin:/sbin:/usr/sbin";

setlogsock('unix');
openlog($SELF, 'ndelay,pid', 'user');

#
Check our environment.
#
if ($euid != $UID) {
 syslog('mail|err',"error: invalid uid: $> (expecting: $UID)");
 exit($EX_TEMPFAIL);
}
if (@ARGV != 1) {
 syslog('mail|err',"error: invalid invocation (expecting 1 argument)");
 exit($EX_TEMPFAIL);
} else {
 $sender = $ARGV[0];
 if ($sender =~ /([\w\-.%]+\@[\w.-]+)/) { # scrub address
 $sender = $1;
 } else {
 syslog('mail|err',"error: Illegal sender address");
 exit($EX_UNAVAILABLE);
 }
}
if (! -x $MAILBIN) {
 syslog('mail|err', "error: $MAILBIN not found or not executable");
 exit($EX_TEMPFAIL);
}
if (! -f $INFOFILE) {
 syslog('mail|err', "error: $INFOFILE not found");
 exit($EX_TEMPFAIL);

Example 8-1. Simple automatic reply program (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

98 | Chapter 8: Hosting Multiple Domains

}

#
Check sender exceptions.
#
if ($sender eq ""
 || $sender =~ /^owner-|-(request|owner)\@|^(mailer-daemon|postmaster)\@/i) {
 exit($EX_OK);
}

#
Check message contents for Precedence header.
#
while (<STDIN>) {
 last if (/^$/);
 exit($EX_OK) if (/^precedence:\s+(bulk|list|junk)/i);
}

#
Open info file.
#
if (! open(INFO, "<$INFOFILE")) {
 syslog('mail|err',"error: can't open $INFOFILE: %m");
 exit($EX_TEMPFAIL);
}

#
Open pipe to mailer.
#
my $pid = open(MAIL, "|-") || exec("$MAILBIN", @MAILOPTS);

#
Send reply.
#
print MAIL "To: $sender\n";
print MAIL while (<INFO>);

if (! close(MAIL)) {
 syslog('mail|err',"error: failure invoking $MAILBIN: %m");
 exit($EX_UNAVAILABLE);
}

close(INFO);
syslog('mail|info',"sent reply to $sender");
exit($EX_OK);

sub PipeHandler {
 syslog('mail|err',"error: broken pipe to mailer");
}

Example 8-1. Simple automatic reply program (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivery to Commands | 99

Configuring a Virtual Auto-Responder
To configure an auto-responder to work with virtual domains, you must create a spe-
cial transport type in master.cf for delivery to the specific command. In order to have
messages delivered to your new component, you have to map an address to the
transport you created using transport maps.

Many auto-responders can handle only a single message at a time with only one
recipient. You can limit the number of recipients to any transport type by setting a
parameter of the form transport_destination_recipient_limit, where the string
transport is the name of the transport type. If a transport called inforeply should be
limited to only one recipient at a time, set the following parameter:

inforeply_destination_recipient_limit = 1

The following steps walk through setting up the email address info@ora.com to use
inforeply.pl. The domain ora.com is configured as a virtual domain. The local
domain on the host is example.com:

1. Create a local account under whose privileges the inforeply.pl program should
execute. In this example, an account called autoresp is used. You should create a
new pseudo-account for this purpose. Use the normal administrative tools on
your system to make the account.

Writing an Auto-Responder
If you are writing your own auto-responder, there are several considerations you should
take into account. The first, and possibly most important, is that your program is
receiving data from the network, which is an untrusted source. Don’t make any
assumptions about the supplied input you are processing, other than to assume that it’s
designed to compromise your system in some way. Under no circumstances should you
invoke a shell where the untrusted input might be able to gain access to your system.

Other issues to think about have more to do with being polite than anything else. For
example, you don’t want your auto-responder to blast out a reply to a mailing list of
hundreds or thousands of recipients. Never send replies to addresses that have the
form owner-list or list-request. There are several other addresses you probably don’t
want to reply to, such as postmaster, daemon, and majordomo. Your program should set
its own envelope address to the null string to prevent mailer loops.

Many mailing lists make use of a header field called Precedence:. They generally set the
value to something like bulk to indicate its purpose. Your program should check the
Precedence: field, and if it is set to bulk, list, or junk, do not send a reply.

Finally, make sure that your program has a way to log what happens to each message
received. Once Postfix delivers a message to your program, the program has the
responsibility of checking for errors and providing a way to communicate them to an
administrator.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

100 | Chapter 8: Hosting Multiple Domains

2. Create a transport type called inforeply by adding an entry to your master.cf file.
The entry should look something like the following:

inforeply unix - n n - - pipe
 flags= user=autoresp argv=/usr/local/bin/inforeply.pl ${sender}

The pipe daemon is used to deliver messages to external commands. You can
specify flags if your program requires any special options. (See the pipe(8) man
page for information on the available options.) The user attribute is required for
any pipe components in master.cf. The argv attribute must be specified last, and
should start with the path to the autoreply command. There are several values
that you can pass to your command when Postfix executes it. The values are
supplied through special macros. In this example, the envelope sender address
(${sender}) is passed. For the simple inforeply.pl responder, you need only the
sender address, but you will often want the recipient (${recipient}) address,
too, for auto-responders that can handle multiple recipient addresses. See the
pipe(8) manpage for the list of available macros.

3. If you haven’t already set up any transports on your system, set the transport_maps
parameter in main.cf to point to the transport table:

transport_maps = hash:/etc/postfix/transport

4. Add an entry in your transport table that contains the address to direct mes-
sages to the inforeply transport. In this case, we’ll use the address
autoresp@ora.com:

autoresp@ora.com inforeply

Now, all messages sent to autoresp@ora.com are delivered to the auto-responder.

5. Execute postmap against the transport lookup table:
postmap /etc/postfix/transport

6. Point virtual_alias_maps to your virtual alias lookup table:
virtual_alias_maps = hash:/etc/postfix/virtual_alias

7. Add an entry to the virtual_alias lookup table to map info@ora.com to both the
new autoreply address and the actual recipient address that can receive the
messages:

info@ora.com autoresp@ora.com, service@oreilly.com

8. Execute postmap against the virtual alias lookup table:
postmap /etc/postfix/virtual_alias

Now messages sent to info@ora.com will be delivered to autoresp@ora.com and
service@oreilly.com.

9. Reload Postfix so that it recognizes the changes to its main.cf and master.cf files:
postfix reload

When a message is sent to info@ora.com, Postfix first finds the destination address in
the virtual_alias lookup table. The address points both to autoresp@ora.com and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Delivery to Commands | 101

service@oreilly.com. Postfix finds autoresp@ora.com in the transport lookup table,
which points to the inforeply transport in the master.cf file. The entry in master.cf
pipes the message to the inforeply.pl program, which sends the reply to the original
sender. Finally, the message is also resubmitted for delivery to service@oreilly.com.

Configuring a Virtual Mailing List Manager
In the next example, you’ll set up a mailing list for a virtual domain. Mailing-list
managers are discussed in Chapter 10. You may want to review that chapter before
setting up your virtual mailing lists. This example creates a mailing list for Major-
domo. You should first install and configure Majordomo according to the directions
in Chapter 10.

Virtual mailing lists work by creating a parallel version of the list under a local
domain. The local version is only used internally on your system. External users can
use the virtual addresses and never know that the local version exists. When naming
the local version, you may want to include the virtual domain name in some way to
distinguish the list from lists for other virtual domains hosted on your system. The
following procedure creates a mailing list at the virtual address astronomy@ora.com
that is handled by the local version astronomy-ora@example.com:

1. Set up the local version of the mailing list just as you would a normal mailing
list, as described in Chapter 10, by adding the following entries to /usr/local/
majordomo/aliases:

astronomy@ora.com list
astronomy-ora: :include:/usr/local/majordomo/lists/astronomy
owner-astronomy-ora: kdent@ora.com
astronomy-ora-request: "|/usr/local/majordomo/wrapper request-answer \
 astronomy-ora"
astronomy-ora-approval: kdent@ora.com

2. Rebuild the Majordomo aliases table:
postaliases /usr/local/majordomo/aliases

3. Create the file to hold the email addresses for list subscribers, and set its owner-
ship to the majordom account:

touch /usr/local/majordomo/lists/astronomy
chown majordom /usr/local/majordomo/lists/astronomy

4. If desired, create an info file for the list at /usr/local/majordomo/lists/astronomy-
ora.info.

5. Create the necessary addresses for the list at the virtual domain. Add the follow-
ing entries to the virtual alias map file virtual_alias:

astronomy@ora.com list
astronomy@ora.com astronomy-ora@localhost
owner-astronomy@ora.com owner-astronomy-ora@localhost
astronomy-request@ora.com astronomy-ora-request@localhost
astronomy-approval@ora.com astronomy-ora-approval@localhost

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

102 | Chapter 8: Hosting Multiple Domains

6. Rebuild the virtual alias map file:
postmap virtual_alias

7. Add addresses to the /usr/local/majordomo/lists/astronomy list file.

You should now be able to send messages to astronomy@ora.com for distribution to
all of the addresses in your list file.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

103

Chapter 9 CHAPTER 9

Mail Relaying

Up until now, we’ve mostly considered Postfix in its role as the end node for email
messages. That is, messages that arrive at the Postfix system are, for the most part,
delivered to the local system. But it’s also common to find Postfix serving as an inter-
mediate node on the path a message follows to its ultimate destination. In this chap-
ter we’ll look at some of the configuration options for Postfix as a client in MTA-to-
MTA communications.

Backup MX
In DNS, MX records refer to mail exchangers (see Chapter 6). MX records contain
both host and priority (or preference) information for sending mail to a domain. A
backup MX server is one that receives mail for a particular domain, but is not the
preferred server to receive the mail. If the preferred server or servers are down, the
backup MX server receives the mail and queues it until one of the more preferred
servers comes back online. Figure 9-1 illustrates delivery to a backup host when the
primary host is not available. The backup queues messages until the primary is back
online, whereupon the backup can deliver messages to it.

When your system is configured in DNS as a backup MX host, you don’t have to
configure any special transport from your system to the primary system. Postfix uses
the DNS records to determine how to route mail to the primary MX host. The only

Figure 9-1. Delivery to backup MX host

Internet

Primary MX

Backup MX

Mail delivery

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

104 | Chapter 9: Mail Relaying

configuration required in Postfix is to indicate that it should receive mail for the
domain by adding the domain name to the relay_domains parameter. When a send-
ing MTA discovers that the primary mail system for a domain is down, it tries the
next preferred one until it finds one that accepts delivery. If your system is a backup
MX host, and the destination domain is listed in your relay_domains parameter, Post-
fix accepts the mail and queues it. Postfix periodically scans its queue and checks for
a more preferred system to see if any are able to accept the message. Once a higher
priority mail exchanger is back online, Postfix can deliver the message to it.

Postfix continues trying to deliver queued messages for the amount of time specified
in the maximal_queue_lifetime parameter, which determines how long deferred mes-
sages stay in the queue before they are bounced back to the sender. The default value
is five days. If you provide secondary mail service for primary servers that you know
will be down longer than the default, you can extend the time.

Relay Recipients
It is highly recommended that you maintain a list of valid recipients for domains you
provide backup MX services to. You should develop a regular process for obtaining
an updated user list from your primary MX servers. If your system does not know all
of the available mailboxes on the primary mail server, it must accept all messages.
It’s only when your backup MX server tries to deliver them to the primary server that
it discovers that a message cannot be delivered. At that point, your server must
bounce the message back to the original sender.

Since spammers often send messages to made-up addresses, if your server does not
know all the valid email addresses on the primary server, your server will unnecessar-
ily accept a lot of mail that must be bounced. The bounce problem is exacerbated by
the spammer tactic of forging sender addresses by using the real email addresses of
innocent bystanders. The forged addresses receive all of the error notices for mes-
sages they never sent (see Chapter 11). The relay_recipient_maps parameter speci-
fies lookup tables that should contain all of the addresses for domains listed in your
relay_domains parameter:

relay_recipient_maps = hash:/etc/postfix/relay_recipients

The relay_recipients file should contain entries with the recipient address on the
lefthand side. The righthand side is not used by Postfix, but you must specify a
value:

#
relay_recipients
#
user1@example.com any_value
user2@example.com any_value
user3@example.com any_value

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Backup MX | 105

If your system is on the same network as the primary, and the user accounts are
stored in some kind of database, you may be able to perform real-time lookups using
MySQL or LDAP (see Chapter 15).

A potential problem is that once you set relay_recipient_maps, you must include
email addresses for all domains you provide backup service to. If not, Postfix will
reject messages that don’t appear in the lookup table. If you don’t know the valid
addresses for some domains, you can specify a wildcard entry for that domain:

#
relay_recipients
#
user1@example.com any_value
user2@example.com any_value
user3@example.com any_value
@oreillynet.com any_value

The final entry is a wildcard entry that allows messages for any address at the
domain. Obviously, it’s better to obtain the list of valid addresses for the reasons
mentioned earlier.

Fast Flushing
Networks that receive mail for many sites, such as ISP networks, typically have some
customers whose systems aren’t always connected to the network. When the cus-
tomer network is offline, the ISP queues its messages. When the site comes online, it
can request immediate delivery of all its queued mail with the ETRN SMTP command:

220 mail.ora.com ESMTP Postfix
EHLO mail.example.com
250-auger.seaglass.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-STARTTLS
250 8BITMIME
ETRN example.com
250 Queuing started

If there are a lot of messages queued when a domain is ready to accept mail, search-
ing every queue file would be time-consuming. Postfix provides a capability called
fast flush to speed up queue processing for a particular domain. Fast flush is handled
by the flush daemon, which maintains lists of messages that are queued for specific
domains so that Postfix knows which messages to deliver when it receives an ETRN
command.

By default, all of the sites listed in relay_domains are eligible for the fast flush service.
You can include domains in addition to your relay domains by adding them to the
fast_flush_domains parameter. Add a domain name as follows:

fast_flush_domains = $relay_domains, example.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

106 | Chapter 9: Mail Relaying

In this case example.com is a domain not already listed in relay_domains.

You can manually notify Postfix that a fast flush domain is ready to accept messages
by issuing the postqueue -s command (or its equivalent, sendmail -qR) with the site
name:

$ postqueue -s example.com

Transport Maps
Postfix can be configured to relay to any other host, regardless of how DNS MX
records are set up. This section discusses the transport_maps parameter in general.
Later sections and other chapters in the book present specific configurations that use it.

Conceptually, transport maps override default transport types for delivery of mes-
sages. The transport_maps parameter points to one or more transport lookup tables.
The following entry sets up /etc/postfix/transport as a transport map lookup table:

transport_maps = hash:/etc/postfix/transport

The keys in a transport lookup table are either complete email addresses or domains
and subdomains. (Email addresses as lookup keys for transport maps require Postfix
2.0 or later.) When a destination address or domain matches a lefthand key it uses
the righthand value to determine the delivery method and destination. Example 9-1
lists some possible transport map entries.

The format of righthand values can differ depending on the transport type, but gen-
erally has the form transport:nexthop, where nexthop often indicates a host and port
for delivery. Each of the possible portions of the righthand value are described here:

transport
Refers to an entry from master.cf. If you are adding a new transport type, first
create an entry for it in master.cf.

host
The destination host for delivery of messages. The host is used only with inet
transports such as SMTP and LMTP. Postfix treats the hostname like any desti-
nation domain. It performs an MX lookup to determine where to deliver mes-
sages. If there are no MX records, Postfix delivers to the A record IP address. If
you know that Postfix should deliver directly to the IP in the A record for the
specified host, you can have Postfix skip the check for MX records by enclosing
the name in brackets. If you use an IP address, the brackets are required.

Example 9-1. Transport map entries

example.com smtp:[192.168.23.56]:20025
oreilly.com relay:[gateway.oreilly.com]
oreillynet.com smtp
ora.com maildrop
kdent@ora.com error:no mail accepted for kdent

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Transport Maps | 107

port
The destination port for message delivery. The port is used only with inet trans-
ports such as SMTP and LMTP. The port can be specified using the actual num-
ber or its symbolic name from the /etc/services file.

Each of the sample entries from Example 9-1 uses a different format in their righthand
values, which are explained below:

example.com smtp:[192.168.23.56]:20025
All messages destined for example.com are relayed using the smtp transport to the
host at IP address 192.168.23.56. Messages are delivered over port 20025
instead of the default SMTP port 25. Notice that the IP address is in brackets, as
required for IP addresses.

oreilly.com relay:[gateway.oreilly.com]
All messages destined for oreilly.com are relayed using the relay transport to the
host gateway.oreilly.com. Since no port is specified, Postfix uses the default port
25. The hostname is in brackets to prevent Postfix from looking up MX records.
Instead, it looks up the A record and delivers to the IP address that the host-
name resolves to.

The relay transport was introduced in Version 2 of Postfix to fix a potential per-
formance bottleneck with queue scheduling. You should direct inbound mes-
sages relayed to internal systems over the relay transport, so that they don’t
compete with messages destined for many different systems on the Internet.

oreillynet.com smtp
All messages destined for oreillynet.com are relayed using the smtp transport.
Since both the next hop and port are left off, Postfix uses the default port 25 and
determines the next hop based on the destination address. Most often, the next
hop is determined by performing a DNS lookup, which determines the MX host
for the domain. This example is a bit contrived, since simply listing oreillynet.
com with relay_hosts achieves the same thing in this case.

ora.com maildrop
All messages destined for ora.com are delivered to the maildrop service. maildrop
must be an entry in master.cf. Since delivery occurs over a pipe rather than an
inet socket, no host and port are specified.

kdent@ora.com error:no mail accepted for kdent
The special error transport causes all mail to be rejected. After the colon, spec-
ify a message to report when email is rejected.

Transport maps can also be used for special handling of certain messages on the local
system. (Chapter 14 discusses content filters, which provide a good example of con-
figuring special local transports.) Another local use of transport maps is to tempo-
rarily defer all of a domain’s messages. To demonstrate a simple use of transport
maps, the next section describes a procedure to defer all of the messages for a
domain.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

108 | Chapter 9: Mail Relaying

Postponing Mail Delivery
Under some circumstances you want Postfix to postpone delivery of messages until it
has received an explicit command to deliver them. Deferred messages are delivered
when you issue the postqueue -f domain command or Postfix receives an ETRN
SMTP command from a fastflush–eligible domain.

A common scenario for deferring messages is when an ISP receives mail for a cus-
tomer network that is not always online. The ISP must queue messages until the net-
work is online and can receive them. Similarly, users on the customer network
should send messages through a local gateway that queues them until they can be
delivered once the network is online. This section presents configurations for both
situations.

Deferring mail relay

This procedure sets up a new transport type called “ondemand,” and configures a
transport map to defer all messages for the example.com domain:

1. Create a new transport in your master.cf file called ondemand. It should be identical
to your smtp transport except for the name:

ondemand unix - - n - - smtp

2. Tell Postfix that delivery of all messages over your new transport should be
deferred automatically. Edit the defer_transports parameter in main.cf to
include your ondemand transport:

defer_transports = ondemand

3. Make sure that the transport_maps parameter points to your transport lookup
table:

transport_maps = hash:/etc/postfix/transport

4. Add an entry to your transport file for example.com that points it to the ondemand
transport:

example.com ondemand

5. Execute postmap on the file.
postmap /etc/postfix/transport

6. Reload Postfix so that it recognizes the changes in its configuration files:
postfix reload

Now any message destined for example.com is deferred until there is an explicit com-
mand to deliver it.

When you are ready to release the deferred messages, issue the postqueue -f com-
mand:

$ postqueue -f example.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Inbound Mail Gateway | 109

Deferring delivery

A home network or small office network that wants to trigger delivery manually
should defer all SMTP deliveries, so that delivery attempts only occur when a con-
nection to the Internet has been established:

1. In main.cf, assign the smtp transport to the defer_transports parameter:
defer_transports = smtp

2. Reload Postfix so that it recognizes the changes in its configuration file:
postfix reload

Once a connection is established, all of the messages can be delivered using
postqueue -f.

The rest of this chapter describes various scenarios where Postfix must relay mail to
other systems. In many cases, transport maps are necessary for configuring the next-
hop delivery details.

Inbound Mail Gateway
A mail gateway is an email system that accepts messages and relays them to another
system. Gateways might provide a path from one network to another, or from one
protocol to another. A common use of a mail gateway is a server that accepts all the
mail for a network from the Internet and relays it to internal mail systems. Mail
gateways are commonly set up in conjunction with firewall systems to limit the
number of servers that need direct access to the Internet.

Imagine a company network such as the one depicted in Figure 9-2. There are sub-
domains for different workgroups at the company, and each workgroup has its
own internal mail server. The gateway system gw.example.com receives all the mail
for the network. The human resources department gets email addressed as
user@hr.example.com, and their mail should go to the server mail1.example.com.
The sales department uses user@sales.example.com, and their mail should go to
mail2.example.com. The client hosts in each subnet retrieve mail from their respec-
tive mail servers. Transport maps are required to set up the mail gateway gw.
example.com to relay messages to the correct internal mail servers.

The following procedure demonstrates how to configure gw.example.com to relay
messages to the correct internal systems:

1. Make sure that the DNS has been configured correctly with MX records for hr.
example.com and sales.example.com pointing to the gateway gw.example.com.

2. In your main.cf file, set relay_domains to include the two internal domains:
relay_domains = hr.example.com, sales.example.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

110 | Chapter 9: Mail Relaying

3. Make sure that the transport_maps parameter points to your transport lookup
table:

transport_maps = hash:/etc/postfix/transport

4. Add entries to your transport file for each domain pointing to the correct inter-
nal mail systems:

#
transport maps
#
hr.example.com relay:[mail1.example.com]
sales.example.com relay:[mail2.example.com]

We’ve used brackets around the internal mail system host names to disable MX
lookups for those systems.

5. Reload Postfix so that it recognizes the changes in its configuration files:
postfix reload

It is highly recommended that you maintain a list of valid recipients for all of your
internal users with the relay_recipient_maps parameter. See “Relay Recipients” ear-
lier in the chapter.

Outbound Mail Relay
When a mail system does not have adequate connectivity or all of the information it
needs to relay messages, it can forward them to another system that is in a better
position for relaying. Consider the network in Figure 9-2 again. If the internal mail
systems don’t have direct access to the Internet, they can’t deliver messages sent by

Figure 9-2. Email gateway to internal systems

Internal network

gw.example.com

mail2.example.com client

mail1.example.com client

client

client

client

client

Internet

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

UUCP, Fax, and Other Deliveries | 111

the users in their subnets. They can, however, pass along all messages to the gate-
way mail system, which can make the deliveries for them. The following procedure
demonstrates setting up Postfix on mail1.example.com to relay all messages it
receives to gw.example.com, which can then make the outbound deliveries.

Before configuring the internal mail systems, make sure that the mail gateway is set
up to permit relaying from the internal mail systems. The mynetworks parameter (see
Chapter 4) should encompass the IP addresses of the internal mail systems, and if
you use SMTP UBE restrictions (see Chapter 11), be sure to include permit_
mynetworks among the rules to allow relaying:

1. Check the mynetworks (or mynetworks_style) parameter to make sure it includes
the client systems.

2. Have the users in the workgroup configure their various mail clients to use
mail1.example.com as their SMTP server.

3. In main.cf, set the parameter relayhost to point to the gateway system:
relayhost = [gw.example.com]

4. Reload Postfix so that it recognizes the changes in its configuration file:
postfix reload

Now all messages delivered to mail1.example.com are relayed through gw.example.com.

UUCP, Fax, and Other Deliveries
The Postfix online documentation describes configuring Postfix for delivery to a FAX
system and setting up a gateway for UUCP. These provide good examples for config-
uring Postfix to work with all kinds of special devices. If you need to create a gate-
way between different types of systems or different networks, transport maps
provide the mechanism for directing mail to the other systems or devices.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

112

Chapter 10CHAPTER 10

Mailing Lists

Mailing lists provide a convenient way to send a single email message to many recipi-
ents. They allow a nearly unlimited number of correspondents to carry on conversa-
tions through email. A server-based, centrally managed mailing list has many
advantages over other mechanisms to send messages to multiple recipients. If you
regularly send email to the same group of people, typing in lists of recipients is too
tedious and prone to error to be practical. MUAs usually have a facility that lets you
create personal aliases that associate an easily remembered name with a list of email
addresses. Personal aliases are fine for an individual, but as soon as the list has to be
shared with others, it is no longer a practical solution. Major advantages of centrally
managed mailing lists are that changes are made in a single place, and the new infor-
mation is immediately available to anyone sending messages to the list. Other advan-
tages become evident when you use Mailing List Managers (MLMs) to administer
the list, relieving administrators from manually updating addresses.

In this chapter we look at creating simple mailing lists within Postfix itself, and then
configuring Postfix to deliver messages to MLMs for more sophisticated list manage-
ment. In deciding whether or not to create your mailing list within Postfix or to use
an MLM, consider how often the list has to be changed, who will make the changes,
and whether you need some of the other features of an MLM, such as moderated
lists and digest versions. MLMs allow users to subscribe and unsubscribe themselves
and to make changes to their addresses, if necessary. If you have relatively static lists
or users who come to you for subscribing and unsubscribing anyway, you probably
don’t need the overhead of an MLM. You can always run both flavors of lists, if that
fits your environment.

There are many aspects and nuances to managing a mailing list. If you will be taking
on the task, you should consult a text that deals specifically with mailing-list man-
agement such as Managing Mailing Lists by Alan Schwartz (O’Reilly).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Simple Mailing Lists | 113

Simple Mailing Lists
Postfix provides the means to create simple mailing lists through the normal alias
facility (see Chapter 4). Because aliases can point to lists of addresses or files that
contain lists of addresses, it is easy to create an alias that points to multiple names.
You can create list aliases in the system aliases file, or in any other file that you spec-
ify in the alias_maps parameter. See more about the alias_maps parameter later in the
chapter. The default alias file when you install Postfix is /etc/aliases.

Let’s suppose that you administer mail for the domain example.com, and you want
to create a new mailing list for people to discuss needlepoint. You decide to create a
mailing list alias needlepoint@example.com to be used for online discussions. Edit
your alias file, and add the following line with the email addresses of people who
want to subscribe to the list:

needlepoint: rgrier@oreilly.com, gmhopper@onlamp.com,
 grayburn@oreilly.com

After making changes to the file, rebuild the alias lookup table by executing:

postalias /etc/aliases

Now any messages sent to needlepoint@example.com will be forwarded to each of
the email addresses listed in the example.

Mailing-List Owners
If any messages cannot be delivered to one of the addresses listed, the original sender
of the message receives an error message explaining that there was a delivery prob-
lem. For small or internal lists this may be perfectly acceptable; however, if you are
creating a large list, or the members of the list do not necessarily know each other, it
is probably more appropriate to have error messages sent to the administrator of the
list. The convention is to create an additional alias for lists using a format like owner-
<list_alias>@example.com, where owner- is prepended to the name of the list alias.
For the previous example, we would create the alias owner-needlepoint.* This owner-
alias should point to an administrator, who is generally in a better position than the
original sender to deal with bounced messages:

owner-needlepoint: kdent@example.com

Sending error notifications to the owner- alias is achieved by setting the envelope
sender to the owner-needlepoint@example.com alias instead of the original sender’s
email address. Example 10-1 shows typical headers from a mailing-list message.

* Some MLM systems have adopted the convention of placing -owner after the alias instead of before.

Example 10-1. Sample headers from mailing-list message

Return-Path: <owner-needlepoint@example.com>
Delivered-To: rgrier@oreilly.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

114 | Chapter 10: Mailing Lists

When the owner- alias exists, Postfix automatically uses it as the envelope sender
address when sending out messages to list members. If, for some reason, you don’t
want Postfix to use the owner- alias but rather to keep the originator’s address, you
can set the parameter owner_request_special to no:

owner_request_special = no

You can also cause Postfix to use the actual administrator’s email address instead of
the owner- alias by setting expand_owner_alias to yes:

expand_owner_alias = yes

If this parameter is set, the address kdent@example.com is used instead of owner-
needlepoint@example.com.

Although users do not generally need to send mail directly to the list owner, you
should create owner aliases even for simple lists so other postmasters can contact the
correct person in case they run into any problems with your list.

Another list convention is to provide a request alias for your lists. Request aliases use
the format <list_alias>-request@example.com. The request alias for the needlepoint
alias looks like needlepoint-request@example.com. Request aliases are used for
requests to subscribe and unsubscribe from lists or to get nontechnical information
about a list.

Separate List Files
If you have more than just a few names on a list, it is more convenient to create a text
file that lists all of the email addresses for the list. The format of the alias entry that
points to a file is as follows:

email_alias: :include:/path/to/file.

Let’s take the needlepoint alias from earlier in the chapter and move the list
addresses into a separate file. Your alias entry should be revised to point to the text
file that contains the list of addresses:

needlepoint: :include:/etc/postfix/needlepoint

The file /etc/postfix/needlepoint contains the email address of each member of the
group. Put one address on each line. When you need to make changes to the list,
simply edit the file:

Received: from cowrie.example.com (cowrie.example.com[192.168.100.7])
 by mail.oreilly.com (Postfix) with ESMTP id B712120DD5B
 for <needlepoint@example.com> Mon, 13 May 2002 11:55:40 -0400 (EDT)
Date: Mon, 13 May 2002 12:00:43 -0400 (EDT)
From: G.M. Hopper <gmhopper@onlamp.com>
X-Sender: gmhopper@cowrie
To: needlepoint@example.com
Subject: Just finished latest project
Message-ID: <Pine.GSO.4.10.10205131200230.692-100000@cowrie>

Example 10-1. Sample headers from mailing-list message (continued)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Simple Mailing Lists | 115

rgrier@oreilly.com
gmhopper@onlamp.com
grayburn@oreilly.com
bogus@example.com

I’m adding an invalid address, bogus@example.com, for testing later in the chapter.

Additional Alias Files
Recall from Chapter 4 that the alias_maps parameter allows you to specify any
number of alias files to use with Postfix. For example, you might want to use a sep-
arate alias file to store your mailing lists. Simply include the separate alias filename
along with the system alias to set the alias_maps parameter. You should also set the
alias_database parameter, so that you can run the command newaliases to update
all of your alias-mapping files:

alias_maps = hash:/etc/postfix/aliases, hash:/etc/postfix/mail_lists
alias_database = hash:/etc/postfix/aliases, hash:/etc/postfix/mail_lists

It may be more convenient to assign all of your alias files to alias_database and then
assign alias_database to alias_maps. If you use other map types for aliases, simply
assign them to alias_maps as well:

alias_database = hash:/etc/postfix/aliases, hash:/etc/postfix/mail_lists
alias_maps = $alias_database, nis:mail.aliases

Remember to reload Postfix when you make changes to main.cf.

Creating a Simple Mailing List
Let’s review everything discussed so far and consider all the pieces of our
needlepoint mailing list. The alias file contains the following lines:

needlepoint: :include:/etc/postfix/needlepoint
owner-needlepoint: kdent@example.com
needlepoint-request: kdent@example.com

The first line in the example causes messages sent to needlepoint@example.com to be
delivered to every address listed in the /etc/postfix/needlepoint file. This file should
contain a list of email addresses of all members of the list. Bounce messages and
requests are forwarded to the real address kdent@example.com. If necessary, users or
other postmasters can send messages to the list owner, and users can send messages
to the request alias for subscription or other information.

When a message is sent to the list, the To: header contains just the address of the
mail list alias and not an expansion of all the names on the list (which could be hun-
dreds or even thousands of names). Each member of the list receives a copy of the
message with headers that resemble those shown in Example 10-1. In this example,
gmhopper@onlamp.com has sent a message to the list. Notice that the Return-Path:
contains the owner alias rather than the actual originator of the message
(gmhopper@onlamp.com).

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

116 | Chapter 10: Mailing Lists

Testing Your List
You can test your list by sending a message to the alias you created for it. In this
example, we’ll use the list alias needlepoint@example.com. Example 10-2 shows the
log entries for a sample test message. Imagine that the address bogus@example.com
is invalid.

Some of the information, such as the timestamp and hostname, has been removed for
clarity. Notice that at the end of the first line there is a comment saying (forwarded
as ACDC120DD70) and the rest of the log entries use the new queue ID. Also notice in
the first line of the example that the message enters the system addressed to
needlepoint@example.com. The second line shows that Postfix uses the owner alias as
the envelop sender address (from=<owner-needlepoint@example.com>) while delivering
the message to all members of the list. The bogus address shows a status of
“bounced.” The address kdent@example.com pointed to by the owner alias receives
the bounce notification, which looks like Example 10-3. Notice in the example that
the bounce notification message is delivered to owner-needlepoint@example.com.
The sender of the message does not receive a notification.

Example 10-2. Log entries for message to astronomy mailing list

postfix/local[7411]: 6C2CE20DD5B: to=<needlepoint@example.com>,
 relay=local, delay=1, status=sent (forwarded as ACDC120DD70)
postfix/qmgr[8163]: ACDC120DD70: from=<owner-needlepoint@example.com>,
 size=1121, nrcpt=8 (queue active)
postfix/local[0835]: ACDC120DD70: to=<bogus@example.com> relay=local,
 delay=1, status=bounced (unknown user: "bogus")
postfix/smtp[6556]: ACDC120DD70: to=<grayburn@oreilly.com>
 relay=mail.oreilly.com[10.82.6.11], delay=1,
 status=sent (250 Mail accepted)
postfix/smtp[6556]: ACDC120DD70: to=<rgrier@oreilly.com>
 relay=mail.oreilly.com[10.82.6.11], delay=1,
 status=sent (250 Mail accepted)
postfix/smtp[5954]: ACDC120DD70: to=<gmhopper@onlamp.com>
 relay=mail.onlamp.com[10.171.8.111], delay=1,
 status=sent (250 Message received: GZCLUC00.E8F)

Example 10-3. Bounce notification for invalid address

From MAILER-DAEMON@mail.example.com Tue Jul 16 12:03:49 2002
Date: Tue, 16 Jul 2002 11:25:27 -0400 (EDT)
From: Mail Delivery System <MAILER-DAEMON@mail.example.com>
To: owner-needlepoint@example.com
Subject: Undelivered Mail Returned to Sender

...

<bogus@example.com>: unknown user: "bogus"

...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mailing-List Managers | 117

Mailing-List Managers
Running mailing lists within Postfix is fine for static lists. But lists that change fre-
quently are better handled by a mailing-list manager (MLM). With an MLM, the
administrator of the list doesn’t have to manually edit the list file to add, delete, or
change addresses because list members can subscribe and unsubscribe themselves.
MLMs also support other features such as archiving of messages, digests of discus-
sions, and the ability to moderate a list by allowing an administrator to review mes-
sages before they are posted to all members.

MLMs work by pointing normal Postfix aliases to commands that handle the distri-
bution of messages and management of lists. MLMs use administrative aliases that
point to programs to handle list functions such as subscribing and unsubscribing
members from the list, handling bounced messages, and possibly filtering messages
sent to the list. The lists themselves actually work the same way as the simple aliases
from the last section. Each list has its own file to store list members, but rather than
editing the file yourself, you can have the MLM automatically add and remove
addresses.

The next two sections look at two popular MLMs: Majordomo and Mailman.

Majordomo
Majordomo is one of the more popular MLMs and has been available since the early
1990’s. It offers a complete set of MLM features, and nearly all administration takes
place by sending commands through email messages. Little to no intervention is
required by a postmaster once a list has been created. There are also web-based
administration packages available to work with Majordomo, allowing much of the
list administration to take place from a web site.

Majordomo is available at the Majordomo home page (http://www.greatcircle.com/
majordomo/.) It requires Perl and works with Perl4 Version 4.036 or Perl5 Version 5.
002 or better. Future releases will probably require Perl5. Majordomo also makes use
of a small wrapper program written in C. If you are planning to build the package
from scratch, you must have an ANSI C compiler.

If you configure Majordomo for moderated lists, where a list administrator approves
posts using the Majordomo-supplied approve, you have to make an adjustment for
Postfix and Majordomo to work together correctly. Postfix prepends a Delivered-To:
header to messages it handles. It then uses the header to detect mailer loops. When a
Majordomo message is delivered to a moderator for approval who then pipes the
message through the approve command, it is sent back to the list with all of its origi-
nal headers intact. When Postfix receives the message again, it recognizes that it has
already seen the message and reports a mail delivery loop.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

118 | Chapter 10: Mailing Lists

The easiest way to fix this issue is to make a small change to the Majordomo approve
script (which is written in Perl). You’ll have to edit the file, normally located in the /bin
directory located below the main Majordomo installation directory. If you follow the
steps in the procedure below, your file will be located at /usr/local/majordomo/bin/
approve. Edit the file and find the subroutine called process_bounce. Within that rou-
tine, there is a while loop, as shown below. Insert the emphasized line as shown, save
the file, and you’re done:

while (<$FILE>) {
 if (/^>?From / && ! defined($from_skipped)) {
 # Skip any initial "From " or ">From " line
 $from_skipped = 1;
 next;
 }

next if (/^delivered-to:/i); # Added for Postfix
 s/^~/~~/;
 print MAIL $_;
}

Creating a Majordomo list

The following steps walk you through setting up the astronomy list alias using Major-
domo and Postfix. These instructions assume that you will create a user called
majordom and install the package at /usr/local/majordomo. If you create a different
username or install to a different location, keep that in mind as you read through this
example.

1. Make sure that you have Perl installed on your system and that it is at least
Version 5.002 or better. You can check your Perl installation by typing perl -v
at a command prompt. This will display license and other information about
your installation of Perl, including the version number:

$ perl -v
This is perl, version 5.005_03 built for i386-freebsd
Copyright 1987-1999, Larry Wall
...

2. Obtain a copy of Majordomo either in source form from the Majordomo home
page or find a prepackaged version from your normal software sources. Follow
the instructions that come with your bundle to install Majordomo on your sys-
tem. If you are installing from source, you will need an ANSI C compiler to build
it.

If you build Majordomo yourself, when you modify the Makefile and
majordomo.cf file, you should be able to follow the instructions as if you were
installing Majordomo to work with Sendmail as the MTA. If the location for
$sendmail_command in majordomo.cf is correct, the rest of the mailer variables
with the default options will be correct.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mailing-List Managers | 119

3. Create and edit a file called /usr/local/majordomo/aliases to store the Majordomo
aliases. Add the aliases for the Majordomo commands as specified in the Major-
domo instructions. Then add the aliases for your list. The file should look like
the following:

majordomo: "| /usr/local/majordomo/wrapper majordomo"
owner-majordomo: kdent@example.com
majordomo-owner: kdent@example.com
astronomy list
astronomy: :include:/usr/local/majordomo/lists/astronomy
owner-astronomy: csagan@example.com
astronomy-request: "|/usr/local/majordomo/wrapper request-answer astronomy"
astronomy-approval: csagan@example.com

4. Edit /etc/postfix/main.cf to add the Majordomo alias file to the alias_maps
parameter:

alias_maps = hash:/etc/aliases, hash:/usr/local/majordomo/aliases

5. You can also add the new alias file to the alias_database parameter to automati-
cally rebuild the datafile when you run the newaliases command:

alias_database = hash:/etc/aliases, hash:/usr/local/majordomo/aliases

6. Reload Postfix so that it recognizes the changes in its main.cf configuration file:
postfix reload

7. Create the file to hold the email addresses for the astronomy list. Set its owner-
ship to the majordom account:

touch /usr/local/majordomo/lists/astronomy
chown majordom /usr/local/majordomo/lists/astronomy

8. Create the info file that contains the message sent to new members of the list
and anyone who sends the info command. Create the file as /usr/local/
majordomo/lists/astronomy.info and include any text that is appropriate for your
list:

Welcome to the astronomy discussion list at example.com. The
purpose of this list is to discuss new astronomical phenomena.
To send a message to all the members of the list, address your
email to <astronomy@example.com>.
The basic rules and etiquette for the list are as follows:
1. ...

9. Make sure that the info file is accessible by the majordom account:
chown majordom /usr/local/majordomo/lists/astronomy.info

10. Build the alias database:
postalias /usr/local/majordomo/aliases

Or, if you added the Majordomo alias file to alias_database, just type
newaliases.

You can test your Majordomo installation by running the following command:

$ echo 'lists' | mail majordomo

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

120 | Chapter 10: Mailing Lists

Executing the above sends an email message to Majordomo containing the com-
mand 'lists', telling Majordomo to send you information about all of the lists it main-
tains. On our example system, the reply from Majordomo looks like the following:

Date: Tue, 16 Jul 2002 18:14:59 -0400 (EDT)
From: Majordomo@example.com
To: kdent@example.com
Subject: Majordomo results

--

>>>> lists
Majordomo@example.com serves the following lists:

 astronomy

Use the 'info <list>' command to get more information
about a specific list.
>>>>
>>>>

You or your users can now send Majordomo commands at the address
majordomo@example.com to get help and be added to lists. To add yourself to the
new mailing list, send a message to majordomo with the subscribe command in the
body of the message:

To: majordomo@example.com
From: tbrahe@porcupine.org
Subject:

subscribe astronomy

If you send a subscription request, you should receive a confirmation message from
Majordomo. You must reply to the message with the authentication code provided
to complete your subscription to the list (see the Majordomo documentation).

Potential problems

If you had no problems during the Majordomo installation, everything should work
as expected. The main issue that you may run into has to do with file permissions. If
you send a message to the list and receive a bounce notification like the following,
then you know you have a permissions problem:

...
 The Postfix program

<astronomy@example.com>: cannot open include file
 /usr/local/majordomo/lists/astronomy: Permission denied

...

Majordomo needs read access to the list file (/usr/local/majordomo/astronomy) and
the list configuration file (/usr/local/majordomo/astronomy.config) when Postfix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mailing-List Managers | 121

invokes it for deliveries to the list. Postfix delivers the message to Majordomo run-
ning with the privileges of the user that owns the alias map file containing the
majordomo alias, /usr/local/majordomo/aliases.db. The normal mechanism used to
ensure that Majordomo has access to the necessary files is to set the Majordomo
wrapper program to set user ID (suid) with root as the owner. This means that regard-
less of the user executing the command, the process runs with root privileges. The
Majordomo installation takes care of setting the permissions properly, but if for
some reason they are not correct, you will see an error message like the one described
above. You can correct the problem by setting the permissions yourself:

chmod 4755 /usr/local/majordomo/wrapper

A better solution than setting the wrapper program suid is to make sure that the alias
file and all of the list files are owned by the majordom user.

Mailman
Mailman is another full-featured MLM. It is available at the Mailman home page at
http://www.gnu.org/software/mailman/. It includes web-based administration and cre-
ates a home page for each list where list administrators and members can perform
administrative functions. It also accepts administrative commands via email much
like Majordomo does.

Mailman requires at least Version 1.5.2 of Python. It includes some security wrapper
programs that are written in C, so you must have an ANSI C compiler if you are
planning to build the package from scratch.

There is one slightly tricky aspect to get Postfix and Mailman working together cor-
rectly. Mailman expects to be invoked by a process running with a particular group
ID (GID). The GID it expects is specified at the time the Mailman package is built. If
you are building the package yourself, make sure that you first create an account and
a group called mailman. You should be able to use the normal administrative tools on
your system to create both the account and the group. When you are finished, you
should have an entry in /etc/passwd that resembles the following:

mailman:*:26413:60003:Mailman List Manager:/home/mailman:/bin/sh

and an entry in /etc/group like the following:

mailman:*:60003:

Make sure that the account mailman has the group mailman as its primary group. In
the examples above, 60003 specifies the mailman group and the mailman account has
that as its primary group.

When you run configure for Mailman, be sure that you include the option --with-
mail-gid=xxx, where xxx is the actual GID for the mailman group that you created.
According to the examples above, you should execute configure using 60003 for the
GID option:

$./configure --with-mail-gid=60003

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

122 | Chapter 10: Mailing Lists

You may have additional options for configure according to your environment. Be
sure to read the Mailman documentation for building the package. If you have
already built your Mailman package and you did not specify the group, build it
again. If you didn’t build your Mailman package, see the sidebar below.

Creating a Mailman list

The following steps walk you through setting up the astronomy list alias using Mail-
man and Postfix. They assume that you create an account and a group called mailman
and install the package in /home/mailman.

1. Make sure that you have Python installed on your system and that you have at
least Version 1.5.2. Test this by executing the python command, which will dis-
play version information and a Python prompt. You can exit the Python shell by
typing Ctrl-D:

WANTED gid 12 GOT gid 99?
If you didn’t build the Mailman package yourself (and don’t have the option of rebuild-
ing it), there is no good way to find out which GID it is expecting other than by looking
at what is reported in an error message. If you have a mismatch between the group of
the Postfix process and the group that Mailman expects, you will receive a bounce
error message after you send an email message to a Mailman list. Mailman also logs the
error, which will look something like the following:

Failure to exec script. WANTED gid 12 GOT gid 99 (Reconfigure
to take 99?)

In order to get Postfix to deliver the message to Mailman using the correct GID, you
have to set the permissions correctly on the Mailman alias file. When Postfix makes a
normal local delivery, it assumes the identity of the recipient of the message. In the case
of an alias, Postfix assumes the identity of the owner of the alias file, unless the owner
is root, in which case Postfix uses the identity specified in its default_privs parameter.
Make sure that the alias file is owned by the mailman user and that the mailman user has
the mailman GID as its primary group. Postfix will then use the mailman group when it
delivers a message to the Mailman system.

If you did not build your own Mailman package and therefore cannot control the GID
that it expects, you will have to accommodate Mailman by getting Postfix to use the
GID Mailman expects. Generate an error message like the one above by first creating
a list (see the steps in this chapter) and then by sending a message to it. You should
receive a bounce error email message (or you can check for the error in the Mailman
log). Note the GID Mailman reports that it wants (WANTED gid 12). Change the primary
group of the mailman account to that group. Make sure that the Mailman alias file is
owned by the mailman account.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Mailing-List Managers | 123

$ python
Python 1.5.2 (#1, Jul 5 2001, 03:02:19) [GCC...
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> ^D
$

If the version number following “Python” on the first line of output is not at
least 1.5.2, you will have to upgrade your copy of Python.

2. Obtain a copy of Mailman either in source form from the Mailman home page or
find a prepackaged version from your normal software sources. Follow the
instructions that come with your bundle to install Mailman on your system. If
you are installing from source, you will need an ANSI C compiler to build it. Be
sure to specify the correct GID when you build Mailman. (See the discussion ear-
lier in this chapter.)

3. You should create a separate alias file to store all of your Mailman aliases and set
the owner and group correctly. Become the mailman user and execute the fol-
lowing commands. This example assumes that you want the alias file in the
mailman home directory located at /home/mailman:

$ cd /home/mailman
$ touch aliases
$ postalias aliases

These commands create both the alias file and the necessary map files that Post-
fix uses for lookups. Since you perform these steps as the mailman user, the
group and ownership of the files will automatically be correct, assuming your
account is set up as it should be.

4. Edit /etc/postfix/main.cf to add the new alias file for storing Mailman mailing
lists. Simply add the Mailman alias file to the existing list of files for the
alias_maps parameter:

alias_maps = hash:/etc/aliases, hash:/home/mailman/aliases

5. You can also add the new alias file to the alias_database parameter to automati-
cally rebuild the datafile when you run the newaliases command:

alias_database = hash:/etc/aliases, hash:/home/mailman/aliases

6. Reload Postfix so that it recognizes the changes in its main.cf configuration file:
postfix reload

7. Execute the Mailman command newlist to initialize your new mailing list. The
output of newlist includes lines of text that must be inserted into the /home/
mailman/aliases file. Copy the lines from the newlist output into /home/
mailman/aliases. Save and exit the file. The emphasized lines in Example 10-4
are the lines that must be added to /home/mailman/aliases.

8. Build the new alias datafile:
postalias /home/mailman/aliases

Or, if you added the Mailman alias file to alias_database, just run the
newaliases command.

blizblaze

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

124 | Chapter 10: Mailing Lists

You or your users can now send requests to astronomy-request@example.com to get
help and be added to the list. You can now use Mailman’s web- or email-based com-
mand interface to specify options for your new list. See the Mailman documentation
to learn its options and other ways to work with the package.

Example 10-4. Executing the Mailman newlist command

bin/newlist
Enter the name of the list: astronomy
Enter the email of the person running the list: kdent@example.com
Initial astronomy password:
Entry for aliases file:

astronomy mailing list
created: 08-Mar-2002 root
astronomy: "|/home/mailman/mail/wrapper post astronomy"
astronomy-admin: "|/home/mailman/mail/wrapper mailowner astronomy"
astronomy-request: "|/home/mailman/mail/wrapper mailcmd astronomy"
astronomy-owner: astronomy-admin

Hit enter to continue with astronomy owner notification...

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

125

Chapter 11 CHAPTER 11

Blocking Unsolicited Bulk Email

Unsolicited Bulk Email (UBE), also referred to as Unsolicited Commercial Email
(UCE), is commonly called spam. Spamming is the practice of sending mass mail-
ings to large numbers of people who have had no prior relationship with the sender
and who didn’t ask to receive such mail. Spam exists because it’s so cheap to send.
The incremental cost of adding even hundreds of thousands of recipients to a mail-
ing is relatively small, so spammers target as many email addresses as they possibly
can. This chapter looks at the problem of spam and the tools Postfix provides to help
limit the consequences.

The Nature of Spam
There is a decidedly dishonest component to most spam. Spammers make no effort
to match message content with a recipient’s interests, and their messages frequently
lie, claiming that the recipient has an association with the company or its partners or
in some way requested information. Messages are sometimes designed to look like an
actual exchange between two people that was mistakenly misdelivered in the hopes
of sparking interest in some product or service.

Spam frequently offers instructions to opt out from receiving more messages; how-
ever, in many cases this is simply a subterfuge on the part of the spammer to confirm
that your email address is good. By replying to such messages, you confirm that your
address is a legitimate one. Following the directions provided will more than likely
cause your address to be added to more spammer lists.

Spammers often try to hide their trail so their messages cannot be traced back to
them. They purposely use false return addresses and forge header information. They
seek out misconfigured systems that allow them to relay anonymously. More
recently spammers have broken into systems and installed their own secret relay
servers. Spammers commonly encode their messages or insert random letters to cir-
cumvent spam filters.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

126 | Chapter 11: Blocking Unsolicited Bulk Email

Some of the techniques employed by spammers have sideeffects that make the prob-
lem much worse than the act of spamming itself. In their scatter-shot approach,
spammers send messages to email addresses they think are likely to exist whether
they actually do or not. Some launch dictionary assaults on mail servers where they
run through preassembled lists of names hoping to find a match with a user on the
mail server.

The Problem of Spam
While spam may seem like a minor issue on a small scale, it is a significant problem
on the Internet. A system hosting hundreds or thousands of users each receiving doz-
ens or hundreds of unwanted messages every day can have substantial difficulties
dealing with the onslaught. There is a real cost to the victims of spam. It unfairly uses
the bandwidth and disk space of its recipients and their providers.

Other costs brought on by spam include technical support personnel time, when
technicians or administrators must help users clean up flooded mailboxes. Some-
times the volume of spam can even make a system unusable for its intended purpose
(clogging bandwidth or filling disk space). In such a case the effects of spam are no
different from those of a denial-of-service attack. Even in less drastic circumstances,
spam interferes with legitimate uses of email. Important messages can easily be over-
looked in a flood of spam or mistakenly deleted when littered mailboxes are cleaned
up.

A significant issue with spam is dealing with messages addressed to nonexistent
users. Some mail systems recognize that a destination address is bogus and can reject
mail before it is accepted; other systems must receive the mail first and then bounce
it as undeliverable. The volume of bounces can easily clog a queue and interfere with
the delivery of legitimate messages. Since the return addresses often don’t really
exist, the bounces cannot be delivered and sit in the queue undergoing many redeliv-
ery attempts until they expire.

Another spamming trick is to use a legitimate return address that belongs to an inno-
cent third party. The target or relay systems that receive the spam send bounce mes-
sages to the supposed sender, helpfully letting that person know that the recipient
does not exist. In this case, thousands or millions of bounce messages will be deliv-
ered to the unfortunate victim in a phenomenon referred to as backscatter. This vic-
tim isn’t involved in any way in the original delivery of the spam. In most cases, the
only solution for these completely innocent bystanders is to abandon the victimized
address and start using a new one.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Spam Detection | 127

Open Relays
If you operate an email server on the Internet, you have a responsibility to make sure
that you do not create an open relay that spammers can use as a launching point for
their activities. An open relay is a mail system that permits outside systems to send
mail to other outside systems, passing the messages along so that the originating sys-
tem does not have to deliver directly to its target. Spammers constantly scan for mis-
configured systems that permit them to relay mail. Before spam became such a
problem on the Internet, mail administrators often operated open relays because it
made their systems convenient for their users. Now nearly all SMTP software sys-
tems are configured by default not to be open relays. Postfix is no exception.

If your system is abused as an open relay, it will most likely be so bogged down with
sending spam that its performance will be hindered for your legitimate users. If you
choose to accept spam into your own system that is, of course, up to you, but you
must take steps to ensure that your system is not used to abuse other systems. There
is a good possibility that if spammers use your system to relay mail, your network
will end up on a blacklist. Once your site is blacklisted, many sites will reject all mes-
sages from your network, both relayed spam and legitimate messages from your
users. Chapter 4 discusses safely configuring Postfix to prevent your system from
being abused.

Spam Detection
As long as you’re not operating an open relay, you can be confident that your sys-
tems are not being used to harm other systems. Your next consideration is to pro-
tect yourself and your users by limiting the spam your network receives. Ideally,
your mail server could simply reject any message that looks like spam. Unfortu-
nately, whereas humans can look at a message and know instantly that it’s spam,
computers have a tougher time detecting it without making mistakes. The ugly
truth is that once you start to reject spam, there is always a risk that you will block
legitimate correspondence.

Misidentifying a legitimate message as spam is referred to as a false-positive identifi-
cation. Your anti-spam efforts are an attempt to detect as much spam as you can
with the fewest possible false-positives. You have to weigh the size of your spam
problem against the possibility of rejecting real email when deciding how aggressive
to be in implementing your anti-spam measures. The extremes range from permit-
ting all spam to accepting mail only from preapproved individuals. Preapproval may
seem severe, but the problem is getting bad enough for some people that whitelist
applications, where any correspondent you receive mail from must be identified
ahead of time, are becoming more common.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

128 | Chapter 11: Blocking Unsolicited Bulk Email

There are two primary ways of detecting spam: identifying a known spamming client
and inspecting the contents of a message for tell-tale phrases or other clues that reveal
the true nature of a spam message. Despite the difficulties, postmasters can achieve
some success with minimal false-positives by implementing various spam-detection
measures.

Client-Based Spam Detection
Client-blocking techniques use IP addresses, hostnames, or email addresses supplied
by clients when they connect to deliver a message. Each piece of information sup-
plied can be compared to lists of items from known spamming systems. Spamming
systems might be owned by actual spammers, but they might also be unintentionally
open relays managed by hapless, (almost) innocent mail administrators. In either
case, if a system is regularly sending you spam, you will probably decide to block
messages from it. One problem with identifying spam by IP address, hostname, or
email address is that these items are easily forged. While the IP address of the con-
necting system requires some sophistication to spoof, envelope email addresses are
trivial to fake.

DNS-based blacklists

In a grass-roots effort to stem the tide of spam on the Internet, various anti-spam ser-
vices, generally called DNS-based Blacklists (DNSBL) or Realtime Blacklists, have
developed. These services maintain large databases of systems that are known to be
open relays or that have been used for spam. A newer, increasingly more common
problem is with systems that have been hijacked by spammers who install their own
proxy software that allows them to relay messages. These hijacked systems can also
be used in distributed denial-of-service attacks. There are DNSBL lists that are dedi-
cated to listing these unwitting spam relays. The idea is that by pooling the informa-
tion from hundreds or thousands of postmasters, legitimate sites can try to stay
ahead of spammers.

Usually, these systems work by adding a DNS entry to their domain space for each of
the IP addresses in their database that have been identified as spam-friendly open
relays. For example, if the host at IP address 192.168.254.31 has been identified as an
open relay, the (fictitious) DNSBL service No Spam Unlimited using a domain name
of nospam.example.com creates a DNS entry like 31.254.168.192.nospam.example.com.
When a client connects to your Postfix system, Postfix can check the No Spam DNS
server to see if there is an entry for the client’s IP address. If the IP address has been
identified as an open relay system, Postfix can reject the message.

Consider very carefully before you decide to make use of a DNSBL service. Many
open relays used to forward spam also operate mail services for nonspamming users.
You are very likely to block legitimate mail in addition to the spam. Also keep in
mind that you are offloading to a third party the responsibility of making important

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Anti-Spam Actions | 129

decisions about who can and cannot send mail to your users. On the other hand, if
you’re buried in spam, DNSBL services can definitely help. If you decide to use one,
review their service options and policies very carefully. Again, you have to balance
your aggressiveness and the likelihood of losing legitimate mail against the magni-
tude of your spam problem.

Content-Based Spam Detection
In addition to identifying clients, you can often recognize spam by its contents. Cer-
tain strings within email messages mark them as likely to be spam (“Our Rates Have
Never Been Lower!!”). But trying to distinguish spam by the contents of the message
can be problematic. Imagine that you receive lots of spam offering new house mort-
gages. You figure you can eliminate most of it by blocking messages that contain
words like “really low interest rate on a new mortgage.” This may indeed block many
spam messages, but you might also block a message from your friend (or one of your
user’s friends) who just got a great deal on a new house and wrote to tell you about it.

Detection Difficulties
The problem with both client- and content-based techniques to identify spam is that
spammers are constantly finding ways to get around them. There is a sort of arms
race going on between legitimate users of email and spammers. You can compile lists
of open relays, but spammers expend a great deal of effort seeking out new open
relays or proxy servers to abuse (and there always seem to be more of them).

You may discover that you receive a lot of spam with the same return address. You
can block messages that use that return address, but spammers use hit-and-run tac-
tics. They obtain an email address from one of the free email sites and use that
address to send thousands or millions of spam messages, and then discard it for
another. Within a couple of days, you’ll never see the address you listed again.

Even content filters have to adjust for spammers escalating tactics. Some spammers
embed HTML codes within the words of their messages to break up phrases you
might filter against. Or they encode the entire message so that when Postfix scans it
for recognized spam phrases, there are no intelligible phrases. Most email clients
oblige users by automatically rendering such messages—decoding or ignoring extra-
neous HTML codes. Recipients often don’t even notice that the message had origi-
nally been encoded.

Anti-Spam Actions
Broadly speaking you have a few choices once you have detected spam:

• Reject spam immediately during the SMTP conversation. Rejecting spam out-
right is an attractive idea because you never have to store a copy of the message
and worry about what to do with it. The sender of the message is responsible for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

130 | Chapter 11: Blocking Unsolicited Bulk Email

handling the error. If your site has a low tolerance for rejecting legitimate mes-
sages, you might prefer to accept suspect messages and develop a process to
review them periodically to make sure that there are no good messages in with
the bad.

• Save spam into a suspected spam repository. If you save the suspect messages
and review them periodically, you can be sure that you don’t miss any legitimate
mail. The task is cumbersome and usually requires frequent reviews, so you may
not gain much over allowing suspect messages into users’ mail boxes.

• Label spam and deliver it with some kind of spam tag. This option provides
users with flexibility in determining their own tolerance for spam versus their
sensitivity to missing real messages. Postfix doesn’t currently have a built-in
mechanism for labeling spam. You can easily have Postfix work with an external
content filter to handle the labeling (see Chapter 14). If the content filter deliv-
ers tagged messages to individual users, they can configure their email software
to deal with it according to their own preferences.

When using an MTA for spam detection, the rejection option is usually best. If you
want more flexibility, consider using options that filter spam at the MDA or MUA
level. A combination of spam filtering is also a good alternative. You can configure
Postfix to reject the obvious spam, allowing suspicious messages through to the next
level where another agent can perform the most appropriate action.

Postfix really excels in its tools to help you identify spam clients and reject them.
Rejecting messages with Postfix requires fewer system resources than invoking exter-
nal filters after the message has been accepted. If you are concerned about losing
legitimate mail, there are still a couple of safety measures available that we’ll look at
when configuring Postfix.

Postfix Configuration
The rest of this chapter discusses the various types of UBE checks Postfix provides. It
considers four different categories of spam detection which are listed below.

Client-detection rules.
Four parameter rules that work with pieces of the client identity. Each rule is
assigned a list of one or more restrictions that can explicitly reject or accept a
message or take no position one way or the other (commonly indicated as
DUNNO). For example, you can configure a rule that includes a restriction to
reject a particular client IP address.

Syntax-checking parameters.
Parameters that check for strict adherence to the standards. Since spammers
often don’t follow the published standards, you can reject messages that come
from misconfigured or poorly implemented systems. Some of the client restric-
tions also fall under this category.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Client-Detection Rules | 131

Content checks.
You can check the headers and the body of each message for tell-tale regular

expressions that indicate probable spam.

Restriction classes
You can define complex client-detection rules with restriction classes. These
allow you to combine restrictions into groups to form new restrictions.

When configuring Postfix to detect spam, you also specify what to do with messages
identified as spam. In general, Postfix can reject them outright, separate them into a
different queue, or pass them along to an external filter.

Client-Detection Rules
Postfix provides the following rules that are assigned restrictions based on client
information:

• smtpd_client_restrictions

• smtpd_helo_restrictions

• smtpd_sender_restrictions

• smtpd_recipient_restrictions

• smtpd_data_restrictions

Each one corresponds to a step of the SMTP transaction. At each step, the client pro-
vides a piece of information. Using the client-supplied information, Postfix consid-
ers one or more restrictions that you assign to each rule. Figure 11-1 shows an SMTP
conversation along with the client rule applied at each step. The header_checks and
body_checks are discussed later in the chapter.

Let’s review the SMTP conversation to see where each of the parameters fits in.

The SMTP Conversation (Briefly)
The SMTP conversation in Figure 11-1 should be familiar to you from Chapter 2.
Example 11-1 shows the log entries for the transaction. First, an SMTP client con-
nects to Postfix over a socket. Because of the way sockets function, Postfix learns the
IP address of the client when it establishes the connection. You don’t see the client IP
address in the figure, but it is logged by Postfix. You can accept or reject a message
based on the client hostname or IP address, thus blocking specific hostnames or IP
and network addresses.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

132 | Chapter 11: Blocking Unsolicited Bulk Email

Once connected, the client sends a HELO command with an identifying host-
name. The hostname provided can be used to accept or reject a message using
smtpd_helo_restrictions.

In the next step, the client issues a MAIL FROM command to indicate the sender’s email
address, followed by a RCPT TO command to indicate the recipient’s email address.

If everything is acceptable up to the point of the DATA command, the client is permit-
ted to send the contents of the message, which consist of message headers followed
by the message body. Postfix provides another opportunity to reject the message
based on its contents (see “Content-Checking” later in this chapter). If the final
header and body checks are acceptable, the message is delivered.

Postfix indicates to the client that it has rejected a message by sending reply codes.
Standard reply codes are described in Chapter 2. In this chapter, we consider codes
in the 4xx and 5xx range. More information appears in a sidebar later in this chapter.

Figure 11-1. SMTP conversation with client rules

Example 11-1. SMTP logging

1. postfix/smtpd[866062]: connect from mail.ora.com[10.143.23.45]
2. postfix/smtpd[866062]: D694B20DD5B: client=[10.143.23.45]
3. postfix/cleanup[864868]: D694B20DD5B: \
 message-id=<20030106185403.D694B20DD5B@smtp.example.com>
4. postfix/qmgr[861396]: D694B20DD5B: from=<info@ora.com>, \
 size=486, nrcpt=1 (queue active)
5. postfix/local[864857]: D694B20DD5B: to=<kdent@smtp.example.com>, \
 relay=local, delay=98, status=sent (mailbox)
6. postfix/smtpd[866062]: disconnect from mail.ora.com[10.143.23.45]

Server: 220 smtp.example.com ESMTP Postfix

Client: HELO mail.ora.com
Server: 250 smtp.example.com

Client: MAIL FROM:<info@ora.com>
Server: 250 OK

Client: RCPT TO:<kdent@example.com>
Server: 250 OK

Client: DATA
Server: 354 End data with <CR><LF>.<CR><LF>

Client: To: Kyle Dent<kdent@example.com>
 From:<info@ora.com>
 Subject:SMTP Example

 This is a message body.
 It continues until a dot
 is typed on a line by itself.
 .

smtpd_client_restrictions

smtpd_helo_restrictions

smtpd_sender_restrictions

smtpd_recipient_restrictions

smtpd_data_restrictions

header_checks

body_checks

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Client-Detection Rules | 133

Listing Restrictions
When you assign restrictions to Postfix UBE rules, it is not necessary to use all of the
rules. You can define restrictions for the ones you need and leave out the others. The
default setting if no rules are set in main.cf looks like the following:

smtpd_client_restrictions =
smtpd_helo_restrictions =
smtpd_sender_restrictions =
smtpd_recipient_restrictions =
 permit_mynetworks, reject_unauth_destination

This prevents your system from being an open relay by allowing any computer on
your network to relay while rejecting all others unless they are sending messages des-
tined for one of your users.

There are many restrictions available. Table 11-1 lists each one along with the client
information it operates on. One important concept that confuses many people at first
is that any of these restrictions can be used in any rule. While it may seem logical
that check_helo_access should be assigned to smtpd_helo_restrictions, it could
equally be assigned to smptd_sender_restrictions or any of the others. This gives
you a lot of flexibility in ordering your restrictions when deciding what to accept and
what to block.

Table 11-1. SMTP rules and restrictions

Restrictions Client-supplied information

check_client_access maptype:mapname Client IP address or hostname

reject_rbl_client

reject_rhsbl_client

reject_unknown_client

check_helo_access maptype:mapname HELO hostname

permit_naked_ip_address

reject_invalid_hostname

reject_non_fqdn_hostname

reject_unknown_hostname

check_sender_access maptype:mapname MAIL FROM address

reject_non_fqdn_sender

reject_rhsbl_sender

reject_unknown_sender_domain

check_recipient_access maptype:mapname RCPT TO address

permit_auth_destination

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

134 | Chapter 11: Blocking Unsolicited Bulk Email

You’ll notice from Table 11-1 that some rules take an argument of the form maptype:
mapname. The mapname refers to a normal Postfix lookup table whose lefthand key is
matched against the piece of client information, and the righthand value is the action
to perform. Access maps are discussed in Restriction Definitions following.

How restrictions work

Each of the nonaccess map restrictions evaluates to or returns one of three possible
values that determine what action Postfix takes with the message: OK, REJECT, and
DUNNO. (Access maps can also return the same values, but they allow additional
actions as well.) The restrictions are evaluated in the order you list them. During pro-
cessing, if a rule returns an explicit REJECT, the message is immediately rejected. If a
rule returns an explicit OK, the processing stops for that parameter but continues on
to the next until all of the assigned rules have been evaluated or Postfix encounters a
rejection. It’s important to note that a rule might explicitly accept a message, but it
can still be rejected by another rule’s restrictions. If the set of rules comes to no defi-
nite conclusion (all DUNNOs), the default action is to accept the message. Any sin-
gle parameter can reject a message, but all of them must accept it in order for it not
to be rejected. There are generic restrictions such as permit and reject that return
explicit OK or REJECT values without considering any of the client information.

When a rule evaluates to REJECT, by default Postfix does not actually reject the
message until after the client has sent the RCPT TO command. Even though it may
know at the HELO command that it’s going to reject this client, it waits until after it
receives the RCPT TO command before returning the reject code. The reason for this
default is that some SMTP clients do not check that they have been rejected during
the transaction and continue trying to deliver the message. In such a case, you end
up with connections that last longer than they should and several warning messages
in your log file. Another advantage to the default is that you get more complete infor-
mation in your log. If you want to change the default to have a rejection take effect as
soon as possible, set the parameter smtpd_delay_reject in main.cf:

smtpd_delay_reject = no

permit_mx_backup

reject_non_fqdn_recipient

reject_unauth_destination

reject_unknown_recipient_domain

reject_unauth_pipelining DATA command

Table 11-1. SMTP rules and restrictions (continued)

Restrictions Client-supplied information

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Client-Detection Rules | 135

You might want to do this in a controlled environment where you know all of the
connecting SMTP clients are well-behaved; otherwise, the default makes sense for
most situations.

Testing new restrictions

A useful parameter for testing new restrictions is soft_bounce:

soft_bounce = yes

When it is set, hard reject responses (5xx) are converted to soft reject responses
(4xx). When you add a new restriction that you’re not sure about, you might want to
turn soft_bounce on and then watch your logs for what’s rejected so that you can
fine-tune your settings by the time another delivery attempt is made.

Another useful option for testing restrictions is the warn_if_reject qualifier. Simply
precede any restriction with it to have that restriction log a warning instead of reject-
ing a message. If you’re not sure what effect a new restriction will have in your envi-
ronment, you can try it out with warn_if_reject, and then implement it completely
only if it works as you expect:

smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination

warn_if_reject reject_invalid_hostname
 reject_unknown_recipient_domain
 reject_non_fqdn_recipient

In this example, if a client uses an invalid HELO hostname when delivering a message,
Postfix logs a warning but still delivers the message (assuming it’s not blocked for
other reasons).

A simple example

Before moving on to the restriction definitions, let’s consider a simple example:

smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 reject_invalid_hostname
 reject_unknown_sender_domain

This example expands on the default configuration with two additional restrictions.
When a client connects, if it’s from your own network, permit_mynetworks returns
OK, so it is allowed to send mail. The other restrictions are not checked. If the client
is from outside your network, permit_mynetworks does not return OK and does not
return REJECT, so it returns DUNNO. Postfix then checks reject_unauth_
destination.

If the message is not addressed to somebody at one of your destination domains, it
returns REJECT; otherwise, it returns DUNNO. Assuming it returns DUNNO, Post-
fix then checks reject_invalid_hostname, which says to return REJECT if the host-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

136 | Chapter 11: Blocking Unsolicited Bulk Email

name supplied with the HELO command is not valid. Otherwise, it returns DUNNO.
Finally, Postfix checks reject_unknown_sender_domain, which returns REJECT if the
domain name of the address supplied with the MAIL FROM command does not have a
valid DNS entry. If none of the restrictions has rejected the message, Postfix accepts
it for delivery.

Restriction Definitions
There are six types of restrictions introduced below. Each of the restrictions are
defined in the sections that follow.

Access maps for client checking
Restrictions of the form check_*_access point to lookup tables that might list IP
addresses, hostnames, or email addresses (depending on the parameter) that
should be accepted or rejected by Postfix.

Other client checks
Other client restrictions compare the client information to general configuration
information instead of access tables. An example is permit_mynetworks, which
you saw earlier.

Strict syntax checking
Some restrictions tell Postfix to enforce SMTP standards very strictly. Since
spammers often misconfigure or use poorly implemented software, you can stop
a lot of spam by making sure that connecting clients follow the rules.

DNS checking
DNS-checking rules ensure that DNS information is correct. Spammers often
work from networks that do not configure DNS correctly. Unfortunately, rules
of this type are appropriate only for a very aggressive anti-spam stance because
of the number of legitimate sites that also do not configure their DNS correctly.

Real-time blacklist checking
Real-time blacklists are services listing suspected spamming clients. Postfix can
check with real-time blacklist services and reject clients based on their listing.

Generic
Generic rules explicitly reject or accept a message. They usually specify your
default stance if a message isn’t explicitly accepted or rejected elsewhere. Since
these rules will always accept or reject a message, they should come last in your
list of rules.

Access maps

Restrictions in the client-checking category all point to access map files. Access maps
are simply a type of Postfix lookup table (see Chapter 4 for more information about
lookup tables). In the lookup table, you specify the client information as a key and
the action to take (accept or reject) as the value:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Client-Detection Rules | 137

check_client_access maptype:mapname
The check_client_access restriction points to an access table containing entries
with IP addresses, network addresses, hostnames, and parent domains to match
against the client IP address. (Postfix performs a reverse lookup on the IP
address to obtain a hostname to compare host and parent domain name infor-
mation.) Each entry includes an action to take when the IP address matches a
key.

check_helo_access maptype:mapname
The check_helo_access restriction points to an access table containing host-
names and parent domains to match against the host information supplied with
the HELO command. Each entry includes an action to take when the supplied host
information matches a key.

check_recipient_access maptype:mapname
The check_recipient_access restriction points to an access table containing
entries with email addresses, domains, and local parts to match against the
address specified with the RCPT TO command. Each entry includes an action to
take when the supplied address matches a key.

check_sender_access maptype:mapname
The check_sender_access restriction points to an access table containing entries
with email addresses, domains, and local parts to match against the address
specified with the MAIL FROM command. Each entry includes an action to take
when the supplied address matches a key.

The restrictions check_sender_access and check_recipient_access both check a sup-
plied email address. For them, the key in your index file can be an email address
(user@example.com) to match a specific address, a domain name (example.com) to
match the domain name portion or subdomains of the address, or the local part of an
email address (user@) to match all addresses using the specified local part.

The rules check_client_access and check_helo_access compare the key to a supplied
hostname or IP address. The index file pattern can be a hostname, an IP address
(192.168.143.23), or a network address specified by the initial octets of the address
(10 or 10.12 or 10.12.154).

Actions can be indicated as follows:

OK
Accept the item. Processing for the current rule stops. Postfix moves on to the
next restriction rule.

REJECT
Reject the item. You can optionally specify a short string of text to be used in the
reply and with logging for this message; otherwise, Postfix uses the general reply
code and text configured for the restriction. The parameter access_map_reject_

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

138 | Chapter 11: Blocking Unsolicited Bulk Email

code contains the default reply code for the check_*_access rules and maps_rbl_
reject_code contains the default reply code for reject_maps_rbl. If you don’t
specify a value, they both default to 554.

DUNNO
Stop checking entries for the lookup table. Postfix moves on to the next restric-
tion for the current rule.

FILTER
Redirect the message to a content filter. You must specify a transport and next
hop as you would in a transport table.

HOLD
Place the message in the hold queue. You can optionally specify a short string of
text to be logged; otherwise, Postfix logs a generic message.

DISCARD
Report a successful delivery to the client, but drop the message. You can option-
ally specify a short string of text to be logged; otherwise, Postfix logs a generic
message. Don’t use this action unless you have carefully considered the ramifica-
tions. Silently dropping messages runs counter to the expected behavior of email
systems. When dealing with spam, dropping messages might be the best course
of action, but discarding any legitimate mail can affect the overall perceived reli-
ability of Internet email.

4xx message text
Reject the message. The response sent to the client is the numerical code you
specify. A response in the 4xx range tells the client there is a temporary prob-
lem; queue the message and try delivery later. (See sidebar.)

5xx message text
Reject the message. The response sent to the client is the numerical code you
specify. A response in the 5xx range tells the client there is a permanent prob-
lem; send a bounce notification to the original sender. (See sidebar.)

You can also set up regular expression tables for access maps. In most cases, it prob-
ably doesn’t make sense to use a regular expression table for your access lists. Post-
fix already breaks up email addresses, domains, and IP addresses into the individual
pieces to make its comparisons, so you really don’t gain much through regular
expressions here. On the other hand, regular expression tables work very well for
header and body checks, which are discussed later in this chapter.

Let’s expand the configuration example with some access maps:

smtpd_client_restrictions =
 check_client_access hash:/etc/postfix/client_access
smtpd_sender_restrictions =
 check_sender_access hash:/etc/postfix/sender_access
smtpd_recipient_restrictions =

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Client-Detection Rules | 139

 permit_mynetworks
 reject_unauth_destination
 reject_invalid_hostname
 reject_unknown_sender

We’ve now added restrictions to consult the lookup tables client_access and
sender_access.

The client_access file can have entries like the following:

10.157 REJECT
192.168.76.23 REJECT
currentmail.com REJECT

and the sender_access file can have entries like the following:

hardsell@example.com REJECT
marketing@ REJECT
specials.digital-letter.com REJECT

Other client-checking restrictions

The following client restrictions make their decisions by comparing client-supplied
information to the local Postfix configuration. The default rules fall under this cate-
gory.

permit_auth_destination
Permits a request if the resolved destination address matches a hostname or subdo-
main where the Postfix system is the final destination for the message or a relay for
the final destination. Final destinations are listed in mydestination, inet_
interfaces, virtual_alias_maps, or virtual_mailbox_maps, and relays are listed in
relay_domains. Furthermore, the address must not contain any sender-specified
routing (e.g., user@example.com@example.net). If permit_auth_destination does
not find a match, it returns DUNNO rather than REJECT. Postfix continues to check
all subsequent restriction rules.

permit_mynetworks
Allows a request if the client IP address matches any of the addresses listed in the
mynetworks parameter. You normally use this restriction to exclude local clients
from other UBE restrictions and to allow them to relay through your SMTP
server.

reject_unauth_destination
Rejects a request if the Postfix system is not the final resolved destination email address
or a relay for the final destination. Final destinations are listed in mydestination, inet_
interfaces, virtual_alias_maps, or virtual_mailbox_maps, and relays are listed in
relay_domains. Addresses must not contain any sender-specified routing (e.g.,
user@example.com@example.net). The relay_domains_reject_code parameter speci-
fies the response code for rejected requests. The default is 554.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

140 | Chapter 11: Blocking Unsolicited Bulk Email

Strict syntax restrictions

Restrictions in the strict syntax category check for misconfigured clients and reject
mail when they don’t comply with the standards. These rules can detect a lot of
spam, but they might also reject legitimate clients. You should study the nature of
your spam and real messages to see which rules will benefit you most without reject-
ing real messages. You can use access maps with OK actions to whitelist known
senders that would otherwise be rejected.

reject_invalid_hostname
Rejects a request if the hostname supplied with the HELO command is not a valid
hostname. The invalid_hostname_reject_code parameter specifies the response
code for rejected requests. The default is 501. Most legitimate senders use valid
hostnames.

reject_non_fqdn_hostname
Rejects a request if the hostname supplied with the HELO command is not in the
fully qualified form, as required by the RFC. The non_fqdn_reject_code parame-
ter specifies the response code for rejected requests. The default is 504.

reject_non_fqdn_recipient
Rejects a request if the address supplied with the RCPT TO command is not in the
fully qualified form, as required by the RFC. The non_fqdn_reject_code parame-
ter specifies the response code for rejected requests. The default is 504. Most
legitimate senders use fully qualified domain names.

reject_non_fqdn_sender
Rejects a request if the address supplied with the MAIL FROM command is not in
the fully qualified form, as required by the RFC. The non_fqdn_reject_code
parameter specifies the response code for rejected requests. The default is 504.

reject_unauth_pipelining
Pipelining is a technique supported by Postfix to speed up bulk mail deliveries
by sending multiple SMTP commands at once. The protocol requires that cli-
ents first check that the server supports pipelining. Some clients incorrectly
begin pipelining before they confirm that Postfix actually supports it. The rule
reject_unauth_pipelining immediately rejects such requests. There is no more
processing, and the message is rejected.

DNS restrictions

The DNS checking rules make sure that clients and email envelope addresses are sent
from domains that have valid DNS information. It would be a great improvement to
email in general if postmasters could always require valid DNS information because
it would be harder for spammers to hide. Unfortunately, there are too many legiti-
mate domains that do not configure their DNS correctly for such strictness to be
practical. You should study the nature of your spam and real messages to see which
will benefit you most without rejecting false-positives. You can use access maps with
OK actions to whitelist known senders that would otherwise be rejected.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Client-Detection Rules | 141

reject_unknown_client
Rejects a request if the client IP address has no DNS PTR record or if a follow-up
lookup on the hostname listed in the PTR record does not match the connecting
IP address. The unknown_client_reject_code parameter specifies the response
code for rejected requests. The default is 450. If you change the default, the reply
code you specify is returned except when there is a temporary DNS error. In this
case, your change is overridden and Postfix returns 450. This rule tends to find
many false-positives for spam because it seems to be very common to have PTR
records misconfigured or not configured at all.

reject_unknown_hostname
Rejects a request if the hostname supplied with the HELO command doesn’t have
either a DNS A or MX record. The unknown_hostname_reject_code parameter
specifies the response code for rejected requests. The default is 450. If you
change the default, the reply code you specify is returned except when there is a
temporary DNS error. In this case, your change is overridden and Postfix returns
450. Many clients do not use a fully qualified hostname and would be rejected
by this restriction.

reject_unknown_recipient_domain
Rejects a request if the domain name of the address supplied with the
RCPT TO command doesn’t have either a DNS A or an MX record. The
unknown_address_reject_code parameter specifies the response code for
rejected requests. The default is 450. If you change the default, the reply
code you specify is returned except when there is a temporary DNS error.
In this case, your change is overridden and Postfix returns 450.

reject_unknown_sender_domain
Rejects a request if the domain name of the address supplied with the
MAIL FROM command has neither an A nor an MX record in DNS. The
unknown_address_reject_code parameter specifies the response code for
rejected requests. The default is 450. If you change the default, the reply
code you specify is returned except when there is a temporary DNS error.
In this case, your change is overridden and Postfix returns 450.

Since the MAIL FROM address is the address that bounce notifications must be sent
to, it makes sense to require a known domain name. It is highly recommended
that you include this rule in your restrictions.

Real-time blacklists

Restrictions for real-time blacklists cause Postfix to perform DNS lookups using
client information with domains you specify to determine if a client is listed with
one of the DNSBL services:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

142 | Chapter 11: Blocking Unsolicited Bulk Email

reject_rbl_client domain name
Rejects a request if a DNS lookup of a hostname composed of the octets of the
client IP address in reverse in the specified domain lists an A record.

reject_rhsbl_client domain name
Rejects a request if the client hostname has an A record under the specified
domain.

reject_rhsbl_sender domain name
Rejects a request if the domain of the sender address has an A record under the
specified domain.

Generic restrictions

There are two generic restriction rules that explicitly accept or reject a message:

permit
Immediately permits a message. Processing for the current restriction parameter
stops, but Postfix continues checking the other restriction parameters.

reject
Immediately rejects a request. There is no more processing, and the message is
rejected.

Tracing a Restriction List
With what we know so far, let’s trace what happens with some simple HELO restric-
tions. Consider that smtpd_helo_restrictions is assigned the following rules:

smtpd_helo_restrictions =
 check_helo_access hash:/etc/postfix/helo_access
 reject_invalid_hostname

and helo_access contains the following entries:

greatdeals.example.com REJECT
oreillynet.com OK

Let’s follow four different scenarios when clients connect with different HELO
commands:

HELO example
Postfix first encounters the check_helo_access rule pointing to the helo_access
lookup table. In checking the lookup table, it does not find the specified hostname
example, so it moves on to the reject_invalid_hostname rule. Since example is not
a complete hostname as required by the standard, Postfix rejects the message.

HELO greatdeals.example.com
Postfix first encounters the check_helo_access rule pointing to the helo_access lookup
table. In checking the lookup table, it finds an entry for greatdeals.example.com with an
action of REJECT. Postfix, therefore, rejects the message.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Strict Syntax Parameters | 143

HELO oreillynet.com
Postfix first encounters the check_helo_access rule pointing to the helo_access
lookup table. In checking the lookup table, it finds an entry for oreillynet.com
with an action of OK. Postfix stops processing for the smtpd_helo_restrictions
parameter without considering any of the other restrictions and moves on to
smtpd_sender_restrictions if specified.

HELO mail.ora.com
Postfix first encounters the check_helo_access rule pointing to the helo_access
lookup table. In checking the lookup table, it does not find the specified
host mail.ora.com, so it moves on to the reject_invalid_hostname rule. Since
mail.ora.com conforms to the format required by the standard, Postfix con-
tinues to the smtpd_sender_restrictions if specified.

Strict Syntax Parameters
There are two parameters configured in main.cf that require strict adherence to Inter-
net email standards. Enable the smtpd_helo_required parameter to require that SMTP
clients start the conversation with the HELO/EHLO verb, as described in the SMTP RFC.

Reject Spam with 4xx or 5xx?
There are two classes of reply codes you can use when rejecting spam. Reply codes in
the 4xx range normally indicate a temporary problem. Given a 4xx reply, a client will
queue a message and attempt delivery later. A 5xx code indicates a permanent error
and tells the client to stop trying to send the message.

At first glance the 5xx code seems like the obvious choice for rejecting spam, because
the spammer is told to stop attempting to deliver the message; however, there may be
benefits to replying with a 4xx code. In case you reject legitimate mail, the client should
attempt to deliver it again. Assuming that you check your logs for such things, you
could tweak your anti-spam settings to allow the message the next time delivery is
attempted. On the other hand, if you reject real spam with a 4xx code, and you have
any secondary mail exchangers for your domain that do not also reject the message,
you may be filling up their queues with your temporary rejections. As you populate
your access tables, you can fine-tune your replies by choosing a code based on who you
are blocking and the reason for it. Keep in mind, however, that spammers don’t have
to respect any reply you send, so you may not have much success in controlling what
happens.

You can specify the reply code with any short text message for the action side of an
access table. Postfix provides parameters to control the default reply code given for
most of the restriction rules. The restriction definitions mention the relevant reject
code parameter when it is available.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

144 | Chapter 11: Blocking Unsolicited Bulk Email

By default Postfix is rather lenient with clients that do not follow the protocol
exactly. If you specify smtpd_helo_required = yes, and a client skips this step, Post-
fix rejects the message. The RFC also specifies exactly how envelope addresses
should be formatted. Normally, Postfix accepts nearly any envelope address that it
can make sense of, but if you specify strict_rfc821_envelopes = yes, Postfix rejects
messages from clients that do not send correctly formatted addresses.

In actual practice, it’s probably a good idea to require HELO because most clients at
least follow the basic steps of the protocol. On the other hand, there are a number of
clients that don’t get address formatting correct. Being too strict here might lose
legitimate messages.

Content-Checking
The last chance you have to reject a message from Postfix directly is by checking the
contents of the message itself. Postfix offers simple content checking through the
parameters:

• header_checks for message headers

• mime_header_checks for MIME headers

• nested_header_checks for attached message headers

• body_checks for the body of a message

These checks are an all-or-nothing feature with Postfix. There is no way to bypass
checks for certain senders or recipients. For more sophisticated analysis, you should
use a separate content filter specifically designed to detect spam. See Chapter 14 for
more information on using filters with Postfix.

Each parameter points to a lookup table containing regular expression patterns and
actions. The patterns are compared to strings within email messages. If Postfix finds
a match, the specified action is executed. By default regular expression checking is
not case-sensitive. See Chapter 4 for information on using regular expressions with
Postfix lookup tables.

Content Checking Configuration
By default mime_header_checks and nested_header_checks use the same lookup tables
as header_checks. If you want to distinguish checks for each one, you can configure
them separately; otherwise, configuring header_checks causes mime_header_checks
and nested_header_checks to use the same patterns as header_checks. When you
assign the checking parameters, indicate both the lookup table and which type of
regular expression you are using (see Chapter 4):

header_checks = regexp:/etc/postfix/header_checks
body_checks = regexp:/etc/postfix/body_checks

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Content-Checking | 145

In a pattern-checking lookup table, the lefthand key is a regular expression enclosed
by two delimiters (usually forward slashes):

/match string/ REJECT

A typical header_checks file contains lines like the following:

/free mortgage quote/ REJECT
/repair your credit/ REJECT
/take advantage now/ REJECT

If any of the strings shown appear in any of the headers of a message (these would
most likely show up in the Subject: header), the message is rejected. Postfix logs the
rejection along with the offending line, and if you specified a message, it is also
logged and sent to the client.

Content Checking Actions
The right hand action can be one of the following values. The values that allow an
optional text message are indicated. The specified message is sent to the client and
logged with the rejection. If you don’t supply a message, Postfix uses the default.

REJECT message
Rejects the message when a line from the message matches the regular expression.

WARN message
Logs a rejection without actually rejecting the message. This action is useful for
testing a regular expression to see what happens in the log before using a
REJECT to actually reject the message.

IGNORE
Provides a way to delete headers or lines from the body of a message. If the regu-
lar expression matches, the line is dropped from the message. This can be useful
to strip out internal network information before sending a message outside your
network. Be careful about what you delete since most headers are required by
the standards and can be very useful in tracking down email problems.

HOLD message
Causes the message to be placed in the HOLD queue. See Chapter 5 for informa-
tion about the HOLD queue.

DISCARD message
Causes Postfix to claim successful delivery and silently discard the message.
Sometimes spammer software won’t take no for an answer. Even if you reject the
message with a 5xx error, the client continues to try to deliver it. DISCARD
makes it look as if the message was delivered even though it was simply thrown
away. DISCARD can also be useful to minimize the backscatter problem men-
tioned earlier in the chapter. If an innocent user’s email address is used as the
sender address, you can claim successful delivery, so that the innocent user does
not receive bounce messages.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

146 | Chapter 11: Blocking Unsolicited Bulk Email

FILTER transport:nexthop
After queuing the message, Postfix sends it through a separate content filter. See
Chapter 14 for more information about setting up separate content filters.

Actions cannot include specific error reply codes or customized restrictions as with
access maps.

Comparing Patterns
Header checks compare each header against every pattern in the listed lookup files.
Multiline headers are combined into a single line before making comparisons. Each
pattern is checked in the order you list them, and checking stops as soon as Postfix
finds a match, at which point the message is handled according to the action you
specified.

The patterns indicated by the body_checks parameter are checked against each line of
the body of the message. Lines are compared one at a time, and each one is checked
against every pattern in the order you list them. Checking stops as soon as Postfix
finds a match, at which point the message is handled according to the action you
specified.

Very long body lines are compared in chunks that are at most as long as the value of
the parameter line_length_limit. The default is 2048. Also, by default, Postfix
checks the contents of the body only up to the value of body_checks_size_limit. The
default is 50 KB. Message headers are compared in chunks that are limited by
header_size_limit. These limits are useful in preventing Postfix from scanning the
entire file when messages contain large attachments.

Some administrators use header checks for simple virus scanning. You can reject all
messages that include attachments with file extensions that might be dangerous to
your users:

/name ?="?.*\.(bat|com|dll|exe|hta|pif|vbs)"?/ REJECT

You should include any other extensions that you know might pose a problem for
your users. Be aware, however, that this pattern is not really sufficient for true virus
scanning since you are certain to miss some extensions, and many PC clients may
execute files regardless of their extension.

A typical body_checks file contains lines like the following:

/increase your sales by/ REJECT
/lowest rates.*\!/ REJECT
/in compliance (with|of) strict/ REJECT
/[:alpha:]<!--.*-->[:alpha:]/ REJECT Suspicious embedded HTML comments

The second line matches any string that starts with “lowest rates” followed by any
text leading to an exclamation point (“We have our lowest rates in 40 years!”). The
fourth line checks for HTML comments that are embedded in the middle of words.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Customized Restriction Classes | 147

Remember that this is a common spammer trick to defeat your content filters, but
it’s also a dead giveaway that the message contains spam.

You can test your regular expressions with the postmap command. Place the contents
of a message into a file, then redirect the file to postmap:

$ postmap -q - regexp:/etc/postfix/body_checks < msg.txt
opportunity. increase your sales by 500%. Consider REJECT

postmap prints any lines that match any of the regular expressions along with the
action specified.

Study the spam you receive to refine and add to your patterns. However, be aware of
potential performance problems with poorly written regular expressions. Another
potential issue with content checking is that there is no way to whitelist individual
messages that you might want to receive despite their containing phrases that trigger
a rejection. In particular, if a message is whitelisted during the restriction parameter
checking (described earlier in this chapter), it might still be rejected by header and
body checks.

As you create rules for detecting spam, keep in mind that your users may differ in
what balance they’ll accept between some spam and the possibility of blocking some
real messages. If you must create different rules for different users, it’s probably best
not to try to accomplish this with an MTA. Instead consider a specialized delivery
agent such as procmail, maildrop, or sieve to set up per-user UBE rules. You can use
Postfix to set up broad per-user class restrictions, as you’ll see in the next section.

Customized Restriction Classes
Restriction classes provide the last wrinkle in the Postfix anti-spam parameters. They
allow you to define a set of restrictions that you can assign to the righthand side of
an access table. They cannot be used in header and body checks—only in access
tables. Restriction classes let you set up different restrictions for different clients,
senders, and recipients. Restriction classes are a powerful tool that can provide great
flexibility in Postfix UBE restrictions. If you require any sort of complicated rules to
block spam, it is well worth your while to invest the time to understand restriction
classes.

Restriction classes are particularly useful when you need to create exceptions to your
normal restrictions. To illustrate with an example, let’s create two classes of users.
One group wants to receive all messages addressed to them whether or not the mes-
sages are spam. The other group prefers particularly stringent checks against spam
even at the risk of losing some legitimate mail.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

148 | Chapter 11: Blocking Unsolicited Bulk Email

Sample Restriction Classes
We’ll call the two classes “spamlover” and “spamhater.” You must list all of the
restriction classes you plan to define in the smtpd_restriction_classes parameter:

smtpd_restriction_classes = spamlover, spamhater

We’ve invented the names of the classes, but once listed with smtpd_restriction_classes,
they can be treated like any other restriction rule. You can assign a list of restrictions to be
considered for the class. Once defined, the restriction class can be used as an action in an
access table. When Postfix encounters the class, it steps through the assigned restrictions.

We’ll define “spamhater” with several restrictions:

spamhater =
 reject_invalid_hostname
 reject_non_fqdn_hostname
 reject_unknown_sender_domain
 reject_rbl_client nospam.example.com

and “spamlover” with a simple “permit”:

spamlover = permit

You could, of course, refine these with restrictions that make sense for your own
configuration.

Now that the restriction classes have been declared and defined, you can put them to
use by assigning the appropriate class to each of our recipients in a lookup table.
We’ll call the table per_user_ube.

#
per_user_ube
#
abelard@example.com spamhater
heloise@example.com spamlover

Next, tell Postfix that it should check your recipient lookup table when checking
restrictions:

smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 check_recipient_access hash:/etc/postfix/per_user_ube

When a message comes in addressed to abelard@example.com, Postfix goes through
the normal default restrictions and then encounters check_recipient_access point-
ing to the recipient lookup table. Postfix finds the recipient address in the file, reads
the action spamhater, and then invokes the restrictions defined for spamhater. If any
of the “spamhater” restrictions returns REJECT, Postfix rejects the message; other-
wise, it is delivered. Messages for heloise@example.com go through the same pro-
cess, but when Postfix checks the “spamlover” restrictions, it finds permit and
immediately accepts the message.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Anti-Spam Example | 149

Postfix Anti-Spam Example
Now that we’ve covered the many aspects of Postfix’s anti-spam arsenal, we’ll finish
with an example configuration. Requirements vary considerably from site to site, so
it’s impossible to make actual recommendations apart from the considerations that
have been discussed in this chapter. Example 11-2 can provide a starting point, but
you must decide for yourself which restrictions fit your own circumstances.

You should enter IP and email addresses into the access tables from messages you
receive that you have identified as spam. It’s very difficult to block a lot of spam with
the check_helo_access and check_sender_access restrictions because it’s so easy for
spammers to fake that information. There is effectively an unlimited number of
addresses and hostnames spammers might use. This makes it nearly impossible to
keep up with them. Since it’s so easy to fake this information, you might be blocking
legitimate hosts and addresses that just have the bad luck of having their informa-
tion used by spammers.

Example 11-2. Sample restrictions to block UBE

smtpd_restriction_classes =
 spamlover
 spamhater

spamhater =
 reject_invalid_hostname
 reject_non_fqdn_hostname
 reject_unknown_sender_domain
 reject_rbl_client nospam.example.com

spamlover = permit

smtpd_helo_required = yes
smtpd_client_restrictions =
 check_client_access hash:/etc/postfix/client_access
smtpd_helo_restrictions =
 reject_invalid_hostname
 check_helo_access hash:/etc/postfix/helo_access
smtpd_sender_restrictions =
 reject_non_fqdn_sender
 reject_unknown_sender_domain
 check_sender_access hash:/etc/postfix/sender_access
smtpd_recipient_restrictions =
 permit_mynetworks
 reject_unauth_destination
 reject_non_fqdn_recipient
 reject_unknown_recipient_domain
smtpd_data_restrictions =
 reject_unauth_pipelining
header_checks = /etc/postfix/header_checks
body_checks = /etc/postfix/body_checks

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

150 | Chapter 11: Blocking Unsolicited Bulk Email

But these checks can be useful against messages that repeatedly use the same forged
information and spammers that don’t attempt to cover their tracks. Some online
marketing services use their real information when sending spam. These sites might
even honor removal requests, but if you object to having to request a removal from
companies you’ve never heard of, you can block them based on the HELO or MAIL FROM
information.

You can also block sites that you don’t want to hear from whether they’re real or
fake. Mail from a site you consider objectionable is one example. Also, if you believe
it’s impossible that you would be receiving messages from the Republic of Maldives,
you could block addresses and hostnames using the Republic of Maldive’s top-level
domain. Keep in mind, however, if you run a mail system for many users, you proba-
bly shouldn’t force your own moral attitude on everyone, or assume your users don’t
have Maldivian relatives or a special interest in the cuisine.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

151

Chapter 12 CHAPTER 12

SASL Authentication

The basic SMTP protocol does not provide a mechanism to authenticate users. Since
email envelope addresses are so easy to fake, you can’t know who is sending mail to
your server unless you have a reliable means to authenticate clients. To allow mail
relay privileges on your server, you need assurance that senders are who they claim
to be, and you cannot rely on the senders’ email addresses as identification. In this
chapter, we look at using the Simple Authentication and Security Layer (SASL) as a
means to control mail relaying and generally to identify who is using your mail
server.

You might want to provide access to individuals using your mail server as their
SMTP server, or to other MTAs that relay through your system. We’ll also look at
configuring Postfix to provide its own credentials to other MTAs that may require
authentication before permitting email delivery or relaying. Chapter 4 discusses the
mail relay problem in general, and some other solutions to consider.

Because you lock down your mail servers to prevent unauthorized relaying, some of
your users might have trouble sending email when they are not on your network. If
you have users that travel with laptops, for example, they will likely connect through
a nearby ISP and get an IP address from its dial-up pool. Or perhaps you have users
that work from home. In any case, whenever you don’t know what users’ IP
addresses will be, SASL can provide the means to reliably identify them.

RFC 2554, “SMTP Service Extension for Authentication,” provides an extension to
the basic SMTP protocol that allows clients to authenticate to an SMTP server using
the SASL protocol. We’ll show how to use the Cyrus SASL libraries from Carnegie
Mellon to add SASL to Postfix. You may optionally also want to add support for TLS
(see Chapter 13). TLS (formerly SSL) is most commonly used to encrypt conversa-
tions between web browsers and servers, but works equally well for mail servers and
clients. Since some of the SASL password mechanisms transmit passwords as plain-
text, you can use TLS to make sure your passwords are not sent in the clear.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

152 | Chapter 12: SASL Authentication

Adding SASL to Postfix requires that you have the Cyrus libraries on your system
and that your Postfix system be compiled with them. Remote users must configure
their email clients to send a login and password when they want to relay mail
through your system. Most modern email clients make this a fairly easy configura-
tion option.

SASL Overview
SASL is a general method to add or enhance authentication in client/server proto-
cols. Its primary purpose is to authenticate clients to servers. When you configure
SASL, you must decide on both an authentication mechanism, for the exchange of
authentication information (commonly referred to as user credentials), and an
authentication framework for how user information is stored. The SASL authentica-
tion mechanism governs the challenges and responses between the client and server
and how they should be encoded for transmission. The authentication framework
refers to how the server itself stores and verifies password information. Figure 12-1
illustrates these two processes. Once an authentication is successful, the server
knows the user’s identity and can determine which privileges the identified user
should have. In the case of Postfix, it is the privilege to relay mail. You can also
optionally limit identified users to using a particular sender address when they relay
mail.

Choosing an Authentication Mechanism
The client and server must agree on the authentication mechanism they’ll use. (See
the Cyrus documentation for currently supported mechanisms.) Some of the more
common mechanisms are listed below:

PLAIN
The PLAIN mechanism is the simplest to use, but it does not include any
encryption of authentication credentials. You may want to use TLS (see TLS
information in Chapter 13) in conjunction with the PLAIN mechanism. The
login and password are passed to the mail server as a base64 encoded string.

LOGIN
The LOGIN mechanism is not an officially registered or supported mechanism.
Certain older email clients were developed using LOGIN as their authentication
mechanism. The SASL libraries support it in case you have to support such clients.

Figure 12-1. SASL authentication frameworks and mechanisms

SASL framework
Unix passwords

SASLDB
Kerberos

etc. . .

SMTP
server

SASL mechanisms
Plain
OTP

Digest
etc. . .

SMTP
client

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

SASL Overview | 153

If you need it, you must specify support for it when you compile the libraries and
Postfix. See Appendix C if you are building your own Postfix. If you are using a
packaged distribution and you need LOGIN support, check the documentation
with your distribution to make sure it includes it. If it is used, the authentication
exchange works the same as the PLAIN mechanism.

OTP
OTP is an authentication mechanism using one-time passwords (formerly S/Key).
The mechanism does not provide for any encryption, but that may not be neces-
sary since any captured password is good for only a single session. SMTP clients
must be able to generate OTP authentication credentials.

DIGEST-MD5
With the DIGEST-MD5 mechanism, both the client and server share a secret
password, but it’s never sent over the network. The authentication exchange
starts with a challenge from the server. The client uses the challenge and the
secret password to generate a unique response that could be created only by
somebody who has the secret password. The server uses the same two pieces,
the challenge and secret password, to generate its own copy, and compares the
two. Since the actual secret password is never sent across the network, it’s not
vulnerable to network eavesdropping.

KERBEROS
Kerberos is a network-wide authentication protocol. Unless you are already
using Kerberos on your network, you probably don’t need to support the KER-
BEROS mechanism. If you are using Kerberos, using SASL is a nice way to fit
SMTP authentication into your existing infrastructure.

ANONYMOUS
SASL includes an ANONYMOUS mechanism, which might make sense for
some protocols, but has no benefit for SMTP. An open relay is essentially using
an anonymous mechanism, and the purpose of SMTP authentication is to elimi-
nate open relays.

When a client connects to a mail server, the server typically lists all of the password
mechanisms it supports, in order of preference. The client tries the first one it sup-
ports. If that fails, it may be configured to try additional mechanisms until it can
authenticate successfully. If the client and server cannot successfully negotiate over a
common mechanism, authentication fails.

Once the server and client agree on a mechanism, they begin the authentication pro-
cess, consisting of one or more challenges and responses that are governed by the
agreed-upon mechanism. The protocol also specifies how these exchanges should be
encoded.*

* Note: that’s encoded, not encrypted. A particular mechanism may or may not include encryption of the cli-
ent’s credentials.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

154 | Chapter 12: SASL Authentication

Choosing an Authentication Framework
The SASL authentication framework can use your existing Unix system passwords
(for example, passwd, shadow, or PAM) or a separate password file just for authenti-
cating SMTP users. Other options include Kerberos or even a new scheme of your
own.

Ultimately, your choice comes down to where and how you want to store your
authentication information. Consider your network and how your users currently
authenticate to decide which framework works best for you. If your mail users
already authenticate on your network through PAM, for example, then you proba-
bly want to configure SASL to use your existing system. If, on the other hand, most
of your SMTP users are virtual accounts (without system logins), you should opt for
a separate password database for SMTP users. Often your POP/IMAP server can
share the same user database, making this a convenient option for virtual mail
accounts.

Postfix and SASL
Before getting started with SASL, you should decide which framework and mecha-
nism you will use because it affects your installation and configuration. In order to
enable SASL authentication in Postfix, you must have the Cyrus SASL library and a
copy of Postfix with SASL support compiled in. Some platforms have precompiled
packages available with support for SASL. If you want to use a precompiled Postfix
package make sure that it specifically includes support for SASL and has the neces-
sary SASL libraries. Furthermore, make sure that the SASL libraries were compiled
with the options you need for your situation. The relevant options are described
throughout the rest of this section.

Cyrus SASL library development is currently following two tracks: SASL and
SASLv2. The SASL track is being phased out in favor of SASLv2. In the future, you
can expect Postfix to include support for SASLv2 only. This chapter discusses
SASLv2. You must have the correct combination of versions of both Postfix and the
SASL libraries.

You should be able to use the latest stable version of the SASLv2 track of the Cyrus
libraries. Postfix support for SASLv2 first appeared in the experimental release Ver-
sion 1.1.7-20020331 and was included in the official release 2.0. It is very important
that you use a version of Postfix that supports SASLv2 to follow the directions in this
chapter. When the text mentions SASL, it refers to Version 2 of the library.

Configuring Postfix for SASL
Before you get started, decide on the authentication mechanisms you plan to sup-
port and the authentication framework you want SASL to use with Postfix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring Postfix for SASL | 155

Specifying a Framework
The SASL library uses a separate configuration file for each application it works with.
Postfix uses a file named smtpd.conf for SASL purposes. This file is usually located at
/usr/local/lib/sasl2/smtpd.conf. At a minimum, smtpd.conf contains a line indicating
the framework to use. We are going to look at specifying either Unix passwords or
separate SASL passwords for Postfix authentication. See the Cyrus documentation to
see other options you might include in smtpd.conf.

Unix passwords

Often, it’s most convenient for SASL to use the existing system database to authenti-
cate users. Historically, this meant using the /etc/passwd file. Today, it’s more likely
that you use /etc/shadow, PAM, or some related authentication database. Since these
passwords are not available to unprivileged processes, and Postfix purposely runs
with limited privileges, it cannot normally authenticate users.

The Cyrus libraries deal with the problem by providing a special authentication
server called saslauthd. It handles requests on behalf of Postfix. The saslauthd dae-
mon requires superuser privileges; however, since it runs as a process distinct from
Postfix and does not have to communicate outside of your network, the security
impact is minimized. If you are going to use Unix passwords with SASL, you must
run the saslauthd daemon that ships with the Cyrus distribution. Note that using
Unix passwords with saslauthd limits you to plaintext passwords because the dae-
mon needs the actual passwords to verify them. See Chapter 13 for using encryption
between Postfix and email clients.

To specify that you want Postfix to use the saslauthd daemon for authentication,
create the smtpd.conf with a line like the following:

pwcheck_method: saslauthd

saslauthd comes with the Cyrus SASL distribution and should be installed in a con-
venient location. The daemon must be running in the background for Postfix to use
it to authenticate clients. When you start saslauthd, you tell it what type of pass-
word system you are using with the -a option. The most common options are pam,
shadow, or getpwent (for the conventional /etc/passwd). For example, to start the dae-
mon on a system that uses PAM for authentication, type the command:

saslauthd -a pam

Consult the Cyrus documentation for other options when using saslauthd. Also,
you probably want this daemon to start automatically at system initialization so
that it is always available for your Postfix server. You can add saslauthd to your
system’s startup processes in the same way you add other daemons such as Postfix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

156 | Chapter 12: SASL Authentication

SASL passwords

If you don’t want your mail server to use existing system accounts, you can create a
separate database of users and passwords that is independent of the system pass-
word mechanism. You can create accounts for email users who have mail access only
and will not be able to log into the host itself. Include the following line in your
smtpd.conf file:

pwcheck_method: auxprop

The term auxprop comes from the Cyrus notion of auxiliary property plug-ins. Plug-
ins allow you to insert external programs for authentication. The Cyrus SASL distri-
bution ships with sasldb as the default auxiliary property plug-in and that should be
all you need to work with Postfix. The keyword auxprop simply says to use an exter-
nal SASL password file.

You do not have to run the saslauthd daemon when using SASL passwords, but you
must create the external password file containing credentials for all of your email
accounts. By default, the SASL username/password file is kept at /etc/sasldb2. The Post-
fix SMTP server needs at least read access to the file, and if you use the auto_transition
feature of Cyrus SASL (see the Cyrus documentation), Postfix will also require write
access to the file. If you don’t need the auto_transition feature, it’s best not to give
Postfix write access to the password file.

If you have other processes that also need access to the file (such as a POP/IMAP
server), you may have to adjust the ownership and permissions so all the processes
that need it can access it. For example, you might want to create an sasl group on
your system. Make sure that the postfix user and other accounts that need access to
the file are all in that group. If any of the other processes need to update the file, then
read-only is too restrictive and you’ll have to provide write access for the processes
that need it. To set the permissions to 440, so that it is read-only and not generally
readable by users on the system, type the following commands:

chown postfix:sasl /etc/sasldb2
chmod 440 /etc/sasldb2

To create accounts for your SMTP server, use the saslpasswd2 command included
with the Cyrus SASL distribution. It stores accounts in /etc/sasldb2. You must spec-
ify both a username and an SASL domain. For Postfix the domain should be the
value specified in the myhostname parameter. If you use the command postconf -h
myhostname to determine your hostname, you can be sure you have the correct one.
The following command creates an account for the user kdent:

saslpasswd2 -c -u `postconf -h myhostname` kdent
Password:
Again (for verification):

Enter the password twice, as prompted. The -c option tells saslpasswd2 to create the
user account, and -u is used to specify the domain for this account, which you take
directly from the Postfix configuration.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Configuring Postfix for SASL | 157

Configuring Postfix
All of the relevant Postfix parameters for SASL password authentication start with
smtpd_sasl* for the SMTP server or smtp_sasl* for the SMTP client. For server con-
figuration you need at a minimum the smtpd_sasl_auth_enable parameter and the
permit_sasl_authenticated restriction, which must be assigned to one of the smtpd
restriction parameters. See Chapter 11 for more information on UBE restrictions.

Enabling SASL

In order to turn on authentication in the Postfix SMTP server, add the enable param-
eter to your main.cf file:

smtpd_sasl_auth_enable = yes

In addition, some older email clients* don’t follow the SMTP authentication protocol
correctly. The specification calls for the server to list its supported mechanisms after
the keyword AUTH followed by a space. These clients expect to receive AUTH followed by
an equals sign. Postfix allows you to accommodate them by setting the following
parameter:

broken_sasl_auth_clients = yes

By setting this parameter, you tell Postfix to advertise its SMTP authentication sup-
port in the nonstandard way as well as the standard way. This option is perfectly safe
to use since it doesn’t interfere with other mail clients, and the nonstandard ones will
now work as well.

Preventing sender spoofing

To make sure that clients use correct sender addresses when relaying, Postfix
allows you to map sender addresses to SASL logins. For example, if you have an
address kdent@example.com that should be used only by the SASL user kdent, you
can create a file requiring the correct user for that address:

kdent@example.com kdent

The file is a normal Postfix lookup table and allows regular expressions as well as
local parts and domains (see Chapter 4 for information on Postfix lookup tables). Use
the parameter smtpd_sender_login_maps in main.cf to indicate the table you create:

smtpd_sender_login_maps = hash:/etc/postfix/sasl_senders

You can list as many addresses as you need in the table. To reject messages from
users attempting to use incorrect sender addresses or users who are not authenti-
cated at all who attempt to use a specified address, include the restriction
reject_sender_login_mismatch with your restriction parameters (see Chapter 11
for information on UBE restrictions).

* Reportedly, Microsoft Outlook and Outlook Express before Version 5, but you may have to experiment to
determine if your clients are culprits.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 12: SASL Authentication

Permitting authenticated users

If you are already using the smtpd_recipient_restrictions parameter as part of your
UBE blocking, you have to tell Postfix to allow authenticated users to relay by add-
ing permit_sasl_authenticated to the list of restrictions. If you were previously using
the default and didn’t need a smtpd_recipient_restrictions parameter, just add the
following line:

smtpd_recipient_restrictions = permit_mynetworks,
 permit_sasl_authenticated, reject_unauth_destination

If you are already using the smtpd_recipient_restrictions parameter, just add
permit_sasl_authenticated to the list of restrictions. Be sure to include some kind of
rejection restriction in your list (see Chapter 11).

Specifying mechanisms

The smtpd_sasl_security_options parameter lets you control which password mech-
anisms are listed when clients connect to your SMTP server. The complete list of
available mechanisms depends on your system and the mechanisms that were avail-
able when your SASL libraries were built. If you don’t specify any options, the
default is to accept all available mechanisms including plaintext passwords, but not
anonymous logins. If you are using the saslauthd daemon, you must accept plain-
text passwords, so the default configuration probably makes the most sense. If you
specify any of the options, you override the default, so make sure that you include
noanonymous among your options. If you set this parameter, you can specify any com-
bination of the following values. For example:

smtpd_sasl_security_options = noanonymous, noplaintext

Common mechanisms include:

noplaintext
If your security policy does not permit passwords to be sent as plaintext, specify
noplaintext. This causes SASL to use one of the challenge/response techniques
that authenticate without transmitting actual passwords.

noactive
In active attacks, attackers manage to insert themselves between the client and
server. Some types of active attacks are commonly referred to as man-in-the-middle
attacks. Attackers may be able to read or alter data as it is transmitted or pretend to
be the client or server. Specify noactive to limit supported password mechanisms to
those that are not known to be vulnerable to active attacks.

nodictionary
In dictionary attacks, attackers run through a preassembled database of possible
passwords trying each one in turn to see if it allows access. Databases are typi-
cally made up of lists of cities, teams, proper names, and all dictionary words

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Testing Your Authentication Configuration | 159

plus obvious variations on the words. Specify nodictionary to limit supported
password mechanisms to those that are not known to be vulnerable to dictio-
nary attacks.

noanonymous
Anonymous logins have no useful purpose for SMTP servers. By default Postfix
does not allow anonymous logins. If you specify any other options, be sure to
also specify noanonymous since you will be overriding the default.

mutual_auth
You can require mechanisms that provide mutual authentication where both the
client and server provide credentials proving their identities. Specify mutual_auth
to limit advertised mechanisms to those that provide for mutual authentication.

Configuration Summary
Following are step-by-step instructions summarizing the configuration described in
this chapter. This is a broad overview of what’s required to set up your Postfix sys-
tem with SASL:

1. Determine the authentication mechanisms and framework you plan to support.

2. Install the SASL libraries and recompile Postfix with SASL support. Or obtain a
Postfix distribution with SASL, including support for the authentication mecha-
nisms and SASL options you need.

3. Reinstall Postfix.

4. Create the file /usr/local/lib/sasl2/smtpd.conf. Enter either saslauthd or auxprop
for pwcheck_method.

5. If you are using Unix passwords for authentication, start the saslauthd daemon,
specifying the type of authentication in use on your system. Otherwise, use the
saslpasswd2 command to create email accounts on your system.

6. Edit main.cf to turn on authentication. This requires that you enable SASL and
that you specify that authenticated clients should be allowed to relay mail. A
basic setup requires at least the following parameters:

smtpd_sasl_auth_enable = yes
smtpd_recipient_restrictions = permit_mynetworks,
 permit_sasl_authenticated, reject_unauth_destination

7. Reload Postfix so that it recognizes the changes in its main.cf configuration file:
postfix reload

Testing Your Authentication Configuration
It’s probably best to try authenticating to your SMTP server manually before having
your users attempt it with their email clients. By connecting to your SMTP server and

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 12: SASL Authentication

manually authenticating, you can see exactly what response you get, and you can
immediately check your log file for any other important information.

The easiest way to connect to your SMTP server is to use a Telnet client and then
start speaking SMTP to your server. (Chapter 2 shows a sample SMTP session.) The
PLAIN mechanism is the easiest to test, so if you have disabled it, you may want to
enable it just to confirm that authentication works. You can disable it after you are
finished testing.

To authenticate using the PLAIN mechanism, you must send the command AUTH fol-
lowed by your credentials encoded using base64. Your credentials are a combination
of the authorization identity (identity to login as), followed by a null character, fol-
lowed by the authentication identity (identity whose password will be used), fol-
lowed by a null character, followed by the password. Usually, the authorization
identity is the same as the authentication identity, and we’ll assume as much here.
Using the credentials for the user kdent, you need to encode the string 'kdent\
0kdent\0Rumpelstiltskin'.

The tricky part is to encode your credentials in base64 without including a carriage
return character. If your system has the mmencode and printf commands, it should be
simple. The printf command prints formatted strings, and does not automatically
include a linefeed like the more common echo command. The mmencode command
simply converts strings into various MIME formats and uses base64 by default,
which is exactly what we need.

You can get the encoded string you need by executing the following:

$ printf 'kdent\0kdent\0Rumpelstiltskin' | mmencode
a2RlbnQAa2RlbnQAcnVtcGxlc3RpbHRza2lu

On some platforms printf might not handle the null characters embedded in the
middle of the string correctly. You’ll know that you have this problem if the encoded
string is shorter than your original string. You can try using the echo command with
the -n switch instead of printf if it’s available on your system. The -n tells echo not
to include a trailing newline character. If you cannot get echo or printf to cooperate,
or if you do not have the mmencode command, you can find a simple Perl solution in
the sidebar in this chapter to get the string you need.

Once you have the string you need, cut and paste it into your Telnet session. In the
example below, you type the telnet command to get things started, and then all of
the bold lines. Here you are testing authentication on the host mail.example.com.
You should specify your own system’s name:

$ telnet mail.example.com 25
Trying 192.168.100.5...
Connected to mail.example.com.
Escape character is '^]'.

Server: 220 mail.example.com ESMTP Postfix
EHLO test.ora.com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Testing Your Authentication Configuration | 161

250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN
250-AUTH LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-XVERP
250 8BITMIME
AUTH PLAIN a2RlbnQAa2RlbnQAcnVtcGxlc3RpbHRza2lu
Server: 235 Authentication successful
quit
Server: 221 Bye

Connection closed by foreign host.

If you do not see a message that the authentication was successful, check your mail
log to see what Postfix has reported. Problems can be tricky to track down because
there are many pieces involved.

When you test authentication using Telnet, if you don’t see the line:

250-AUTH LOGIN PLAIN DIGEST-MD5 CRAM-MD5

listed among the server’s extensions, make sure that you didn’t forget smtpd_sasl_auth_enable
in your main.cf file. If the parameter is there (without typos), then you’d better look at how you
compiled Postfix and make sure that it was built with support for SASL.

encode_sasl_plain.pl
If you don’t have the mmencode (or mimeencode) command, here’s a simple Perl script to
create the encoded string you need for testing. This script requires the MIME::Base64
module, which may not be installed on your system. You can easily retrieve it from
your favorite CPAN mirror:

#!/usr/bin/perl

use strict;
use MIME::Base64;

if ($#ARGV != 1) {
 die "Usage: encode_sasl_plain.pl <username> <password>\n";
}

print encode_base64("$ARGV[0]\0$ARGV[0]\0$ARGV[1]");
exit 0;

To get the required base64 authentication string for the user kdent using the password
Rumpelstiltskin, execute the command as follows:

$ encode_sasl_plain.pl kdent Rumpelstiltskin
a2RlbnQAa2RlbnQAcnVtcGxlc3RpbHRza2lu

This produces the required string, which you can then cut and paste into your Telnet
session.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 12: SASL Authentication

If the log tells you that it cannot open the db file, make sure that the password file
exists in the /etc directory and that the permissions are set so the postfix account has
access to it. The Cyrus distribution comes with some utilities that might help you
diagnose problems. Check the documentation for the sasldblistusers2 and the
saslpasswd2 commands.

SMTP Client Authentication
You may want your Postfix server to relay through other servers that require SMTP
authentication. In addition to requiring passwords on your own server, you can con-
figure Postfix to provide login names and passwords when relaying mail through
other SMTP servers.

You have to provide Postfix with a password file that contains the credentials it should
use when authenticating to other servers. Entries in the password file contain a domain
or hostname, username, and password in the form: domain username:password. For the
domain or hostname, Postfix first checks for the destination domain from the recipi-
ent address. If it doesn’t find the domain, it then checks for the hostname it is connect-
ing to. This allows Postfix to work easily with sites that have multiple MX hosts that
share the same user database. Use smtp_sasl_password_maps parameter to specify
where your password file is.

The client smtp_sasl_security_options parameter works just like server smtpd_sasl_
security_options (discussed earlier in the chapter) for the SMTP servers. If you don’t
specify any options, the default allows all available mechanisms including plaintext
but not anonymous logins.

Procedure to Enable SMTP Client Authentication
Use the following steps to configure Postfix to provide a login and password when
relaying mail. In this example, you’ll set up two different passwords for Postfix to
authenticate when relaying through any server for the domain ora.com and through a
host called mail.postfix.org:

1. Create a file called /etc/postfix/sasl_passwd with entries for each host, login, and
password combination you need. Your file should resemble the following:

ora.com kdent:Rumpelstiltskin
mail.postfix.org kyle:quixote

2. Execute postmap on the file:
postmap /etc/postfix/sasl_passwd

3. Edit main.cf to turn on client authentication. Notice that you are now setting
smtp_sasl_auth_enable instead of smtpd_sasl_auth_enable as you did to turn on

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

SMTP Client Authentication | 163

authentication at the server. You must also set smtp_sasl_password_maps to point
to the password file you created:

smtp_sasl_auth_enable = yes
smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd

4. Reload Postfix so that it recognizes the changes in its main.cf configuration file:
postfix reload

Now, when the Postfix SMTP client attempts to relay messages through any of the
domains or hosts listed in /etc/postfix/sasl_passwd, it will offer the corresponding
authentication credentials. For example, if your Postfix smtp client connects to the
server mail.ora.com, it authenticates with the username kdent and the password
Rumpelstiltskin.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

164

Chapter 13CHAPTER 13

Transport Layer Security

Transport Layer Security, or TLS (formerly known as SSL), enhances TCP communi-
cations by adding encryption for privacy and message integrity. RFC 3207 defines an
extension to SMTP known as STARTTLS. Its primary purpose is to provide privacy
in peer-to-peer communications. It can also give you assurances that your mail is not
being delivered to a rogue system posing as the server you think you’re sending mail
to. Another useful application is in combination with SASL, to protect plaintext
passwords that would otherwise be sent in the clear.

One nice benefit of TLS is that you can obtain the privacy and assurances of reliable
server identification without a previous arrangement between systems. Strong
authentication is also possible if your users’ email clients support it. By using client
certificates, which are cryptographically signed identifiers (see sidebar), your mail
server can be sure that connecting clients are indeed who they claim to be. You can
use client certificates in place of or in conjunction with SASL authentication dis-
cussed in Chapter 12. There is administrative overhead in managing client certifi-
cates and assisting users in configuring their email clients to use them, while using
TLS just to encrypt authentication credentials is fairly easy to set up.

It is important to note, however, that TLS is not meant to protect the contents of
email messages. When you encrypt the transmission between a client and server,
everything (including the message) is encrypted. However, TLS protects only the
transmission between the two systems. After the server receives a message, it is prob-
ably stored as plaintext. You can’t be sure if the message will be encrypted or not
when the server forwards it to the next destination, or when the final recipient down-
loads the message to read it. Unless you can control and encrypt the path all the way
from the originating client to the ultimate recipient of the message, it will most likely
pass in the clear at some point on its way to delivery. To achieve end-to-end privacy
you need a client solution such as PGP or S/MIME.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

TLS Certificates | 165

Postfix and TLS
Support for TLS in Postfix is provided by a set of patches written by Lutz Jänicke.
You can follow the link for Add-on Software from the Postfix home page to down-
load the patches. (See Appendix C for information on building Postfix with the TLS
patches.) If you are using a prebuilt Postfix package for your platform, make sure
that it has the TLS patches built in.

In addition to compiling Postfix to support TLS, you must also create and configure
TLS certificates. You need both a private key and a public key. The public key is a
signed certificate identifying your server. It is validated and digitally signed by a cer-
tificate authority (CA), which attests that your certificate does, in fact, identify your
system (see sidebar in Chapter 13). In addition to your own certificates, you must
also have the public key of the CA that signed your certificate.

You can register with any of the many CAs to obtain a signed certificate, or you can
act as your own CA. The clients connecting to your TLS-enabled server must recog-
nize and acknowledge the CA you use and agree to accept it as an authority to attest
to your identity. Generally, it is a fairly simple configuration option in email clients
to accept a certificate and have the CA public key added to its list of trusted authori-
ties if it isn’t listed already.

TLS Certificates
The TLS patches for Postfix were written using the OpenSSL libraries. The libraries
come with command-line tools for managing certificates, which you will need to
generate certificates. For Postfix purposes, all of your certificates must be in the
PEM format, which is base64 encoded data with some additional header lines. The
default output for the OpenSSL tools is PEM, so you won’t have to convert any cer-
tificates you generate to use with Postfix. By default, the OpenSSL tools are installed
below /usr/local/ssl. The openssl command is the utility you’ll use most often in
managing your certificates.

Becoming a CA
Your server certificates have to be signed by a CA. You can easily set yourself up as a
CA to sign your own certificates. The OpenSSL distribution includes a script to con-
figure yourself as a CA. From the SSL home directory, type the following:

misc/CA.pl -newca

Answer all of the prompts as requested. This sets up all of the necessary CA files
below ./demoCA. Later, when you issue the command to sign a certificate, the
openssl command will refer to these root certificates.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 13: Transport Layer Security

TLS Certificates Brief Overview
TLS uses public-key cryptography to allow a client and a server to communicate pri-
vately. It also provides assurance that no one has tampered with transmitted informa-
tion and that the information is not forged because the protocol allows for both the
client and server to authenticate each other. Always keep in mind, however, that the
benefits of TLS are limited to just the end points of a given TLS connection. What hap-
pens to any data before or after it passes between the client and server is not protected
by TLS.

Public-key cryptography uses a pair of complementary keys. One can be widely distrib-
uted and the other is a secret key. Data encrypted with one key can be decrypted with
the other key and vice versa. Others can send you data encrypted with your public key
that only you can decrypt with your private one. In most implementations, the private
key can be used to create a digital signature of a block of data. The public key can then
be used to verify that a particular private key created a given signature.

Moreover, your public key is associated with an identifier, referred to as its common
name (often the hostname of your server). Others can be sure your server is what it
claims to be by comparing the common name associated with its public key against its
DNS hostname or a name supplied during connection handshaking. In general, you
want everyone to have your public key, but your private key must be guarded at all
costs.

Public keys are digitally signed by CAs to create certificates. CAs are usually third-party
organizations that are trusted by both sides of the exchange. In theory, the CA’s digital
signature indicates that it has verified the identity of the public-key holder and attests
that this public key belongs to this server.a A public key validated by a CA is often
referred to as a signed certificate. Your trust in a certificate should extend only as far as
your faith in the CA that signed it. The only assurance that exists with certificates
comes from the CA that attests to a certificate holder’s identity.

The public/private keys are actually used only at the beginning of a connection to
determine identities and to encrypt a randomly chosen session key. This single key is
used by both sides to encrypt and sign the rest of the exchange. A session key can be
used only for a single session, and then it is discarded.

Let’s take a look at the exchange between a client and server. The client contacts a
server and requests an encrypted connection. On the Web, the client uses https; with
email, the client issues the STARTTLS command to indicate that it wants an encrypted
connection.

—continued—

a. In practice, this has turned out to be a very difficult aspect of public-key cryptography systems.
There have been a number of high-profile failures revealing that trust in a trusted certificate author-
ity might be misplaced.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

TLS Certificates | 167

Generating Server Certificates
You can use the openssl command to generate the public and private keys for your
server. From the public key, you create a certificate signing request (CSR) to send to
a CA for validation. Once signed, your public certificate can be widely distributed,
but your private keys must be carefully guarded. In fact, many applications store
encrypted private keys and require a pass phrase to access them. You cannot use
encrypted keys with Postfix, however, because different components need read
access to the keys as they are started by the master daemon.

The OpenSSL distribution includes scripts to help you generate keys and certificate-
signing requests, but the scripts encrypt the keys by default. Since you want to leave
the keys unencrypted, it’s just as easy to use the openssl command directly. Execute
the following command to create a public and private key to be used with Postfix:

$ openssl req -new -nodes -keyout mailkey.pem \
-out mailreq.pem -days 365

The openssl command with the -new option creates both a private key and a CSR.
The -nodes option tells openssl not to encrypt the key. -keyout and -out indicate
the names of the files where the private key and the CSR should be created.
Finally, -days 365 says to make the certificate valid for one year.

If you are using a third-party CA, follow its directions for getting your certificate
request signed. You will be sending in the mailreq.pem file created above. If you are
acting as your own CA, you can sign the file yourself with the following command:

openssl ca -out mail_signed_cert.pem -infiles mailreq.pem

This produces the file mail_signed_cert.pem, which will serve as your signed certificate.

You probably want to copy all of your Postfix/TLS-related certificate files to a conve-
nient location. If you used all of the defaults, execute the following commands to
move the certificate files into the Postfix configuration directory:

cp /usr/local/ssl/mailkey.pem /etc/postfix
cp /usr/local/ssl/mail_signed_cert.pem /etc/postfix

The server obliges by sending back its signed certificate, which indicates its common
name and the CA that has validated it. The client verifies the server’s identity. It checks
to see if the signing CA is listed among those it trusts and that the common name on
the certificate is what it expects. If the certificate checks out, the client and server deter-
mine a key agreement to generate a session key to be used for this exchange and then
discarded. The key agreement determination differs depending on the type of cypher
in use. The conversation continues with both sides now using the private session key
to encrypt and verify all transmissions.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 13: Transport Layer Security

These files represent your server private key and public certificate. Because you cre-
ated the private key without encrypting it, you must protect it by using permissions
that are as restrictive as possible. Use the following commands to make sure it is
owned and readable only by the root account.

chown root /etc/postfix/mailkey.pem
chmod 400 /etc/postfix/mailkey.pem

Installing CA Certificates
Your Postfix/TLS server must have access to the public certificate of the CA that
signed your server certificate and any CAs that signed certificates for your users. If a
single CA signed both, you need only one CA certificate. If you are acting as your
own CA, copy the cacert.pem file that was created after you ran the CA.pl script:

cp /usr/local/ssl/demoCA/cacert.pem /etc/postfix

If you used a third-party CA to sign your public certificate, place that organization’s
PEM-format public certificate in the file /etc/postfix/cacert.pem. You will also need
public certificates from any CA that signed client certificates you intend to trust.

There are two different ways to add CA certificates to Postfix/TLS. The first keeps all
of the certificates together in a single file defined by the smtpd_tls_CAfile parameter.
You simply append new certificates to the existing file. If, for example, your CA cer-
tificates are stored in /etc/postfix/cacert.pem, and you have a new certificate stored in a
file called newCA.pem, use the following commands to add your new CA certificate:

cp /etc/postfix/cacert.pem /etc/postfix/cacert.pem.old
cat newCA.pem >> /etc/postfix/cacert.pem

(Be sure to type two angle brackets so that you don’t overwrite the file.)

The other option is to keep all of your CA certificates in separate files. This option
makes maintenance of CA certificates a little easier, but the certificates will not be
automatically available to a chrooted Postfix. Most likely you would choose this option
if you have a lot of CA certificates to deal with. The parameter smtpd_tls_CApath points
to a directory where the CA certificates are stored. To add additional certificates, sim-
ply copy a new certificate file into the directory and execute the c_rehash utility that
comes with OpenSSL. For example, if you have a new certificate stored in a file called
newCA.pem and you store all of your certificate files in /etc/postfix/certs, use the follow-
ing commands to add it to your Postfix installation:

cp newCA.pem /etc/postfix/certs
c_rehash /etc/postfix/certs

Postfix/TLS Configuration
The TLS patches for Postfix introduce additional parameters for dealing with TLS
within the SMTP server. Following are some of the critical TLS parameters that
you’ll need for the basic configuration. See the sample configuration file that comes
with the patch distribution for additional TLS parameters.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

TLS Certificates | 169

smtpd_use_tls
Turns on server TLS support. Otherwise, Postfix operates as it would without
the TLS patch. For example: smtp_use_tls = yes

smtpd_tls_key_file
Points to the file containing your server’s private key. For example: smtpd_tls_
key_file = /etc/postfix/mailkey.pem

smtpd_tls_cert_file
Points to the file containing your server’s signed certificate. For example: smtpd_
tls_cert_file = /etc/postfix/mail_signed_cert.pem

smtpd_tls_CAfile
Points to the file containing the public certificates identifying Certificate Author-
ities you trust. For example: smtpd_tls_CAfile = /etc/postfix/cacert.pem

smtpd_tls_CApath
Points to a directory of files each containing a public certificate for a Certificate
Authority you trust. For example: smtpd_tls_CApath = /etc/postfix/certs

Once you set these parameters in your main.cf file and reload Postfix, your server will
be ready to handle encrypted connections.

Postfix/TLS Configuration Summary
Following is a summary of the steps to follow in order to set up Postfix to use TLS:

1. If it’s not already installed on your system, install the OpenSSL distribution that
you’ll need to generate TLS certificates.

2. Recompile and reinstall Postfix with the TLS patch (see Appendix C) or obtain a
Postfix distribution that includes the TLS code.

3. Generate server certificates including a certificate-signing request. You can vali-
date the signing request yourself if you’re acting as your own CA or send it to a
third-party CA for validation.

4. Install your certificates (server secret key, signed public certificate, and your
CA’s public certificate) into the Postfix directory.

5. Edit main.cf and set the following parameters for TLS:
smtpd_use_tls = yes
smtpd_tls_key_file = /etc/postfix/mailkey.pem
smtpd_tls_cert_file = /etc/postfix/mail_signed_cert.pem
smtpd_tls_CAfile = /etc/postfix/cacert.pem

If there are other TLS parameters that you want to set, do so here (see the TLS
patches documentation).

6. Reload Postfix so that it recognizes the changes in its main.cf configuration file:
postfix reload

Now, when a client requests an encrypted session, your server should be able to
respond appropriately.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 13: Transport Layer Security

Requiring Client-Side Certificates
You may want to use client-side certificates instead of, or in addition to, other SMTP
authentication techniques. Client-side certificates provide an excellent method of
authentication that can be very difficult to fake.

Client-side certificates must be signed by a CA. If you plan to have your users’ certifi-
cates signed by a third-party CA, you should follow the directions from your CA for
creating client-side certificates. You can also create client certificates and sign them
yourself using tools from the OpenSSL package.

Creating client certificates

Creating client certificates is just like creating the server certificate we saw earlier in
the chapter with the added step of converting the signed certificate into a format that
email clients can import. Most popular mail clients expect certificates in the PKCS12
format, which packages together the signed certificate and private key and protects
them with a password. If you use a third-party CA, the company will most likely pro-
vide you or your users with the correct format needed for your particular email cli-
ent. If you are signing certificates yourself, you have to create a PKCS12-formatted
file to give to your users. The file is created with the user’s signed certificate, the pri-
vate key corresponding to that certificate, and your own CA public certificate.

You have to create a separate certificate/key pair for each user you plan to authenti-
cate with certificates. You should decide on a policy for choosing a distinguished
name. Generally, you would use the individual’s email address or the client
machine’s hostname when generating the certificates. The steps below walk through
creating a certificate for a user with the email address kdent@ora.com:

1. Using the openssl command, generate a private and public key for your user.
Remember that your public key also has to be signed by a CA (possibly your-
self):

$ openssl req -new -nodes -keyout kdentkey.pem \
-out kdentreq.pem -days 365

This command creates both a private key and a CSR, as specified by the -new
option. The -nodes option tells openssl not to encrypt the key (see “Generating
Server Certificates”). -keyout and -out indicate the names of the files where the
private key and the CSR should be created. Finally, -days 365 says to make the
certificate valid for one year.

2. If you are using a third-party CA, follow their directions for getting your certifi-
cate request signed. You will be sending them the kdentreq.pem file you created
above. If you are acting as your own CA, you can sign the file yourself with the
following command:

openssl ca -out kdent_signed_cert.pem -infiles kdentreq.pem

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

TLS Certificates | 171

3. Once you have the signed certificate, convert it to a format that can be used by
your users’ email clients:

openssl pkcs12 -in kdent_signed_cert.pem -inkey \
kdentkey.pem -certfile /etc/postfix/cacert.pem -out kdent.p12 \
 -export -name "kdent@ora.com"

You will be prompted to provide a password for the file the command creates.
You will have to provide your user with the password you select. The -certfile
option points to your own CA certificate file. In this example, you’re using the
file as created by the CA.pl script. Once finished, you can provide your user with
the kdent.p12 file and the password you used when creating it.

Your user should now be able to import the file into a mail client that supports
the PKCS12 format.

Configuring client-side certificate authentication

Postfix/TLS uses certificate fingerprints to identify acceptable certificates. A finger-
print is a cryptographic hash calculated from a signed certificate. Fingerprints for
each certificate are stored in a standard Postfix lookup table (see Chapter 4). When a
client presents a certificate, Postfix/TLS calculates the fingerprint from the certificate
and compares it to those listed in its lookup table. If it finds a match, it permits the
client to relay.

You need to calculate a fingerprint for each client certificate that you will accept.
Many email clients can produce a fingerprint for you, or if you created the certifi-
cate, you can easily calculate a fingerprint with the openssl x509 command:

$ openssl x509 -fingerprint -noout -in kdent_signed_cert.pem \
| cut -d= -f2

57:8E:95:63:67:CD:2B:96:7C:0A:3A:61:46:A5:95:EA

To continue the calculation:

1. Obtain a list of fingerprints for each of your users’ client certificates. You can
generate them as described above or obtain them from your users if they can get
them from their email clients.

2. Create a file to store all of the client certificate fingerprints. For this example,
you’ll create a file called /etc/postfix/clientcerts

3. Edit the clientcerts file to add each fingerprint. Since this is a standard Postfix
lookup table, you must also add a righthand value for each fingerprint, even
though that value is not used. Use a value that will help you to identify the fin-
gerprint in the future. Your resultant file should contain entries like the follow-
ing for each of your users:

57:8E:95:63:67:CD:2B:96:7C:0A:3A:61:46:A5:95:EA kdent@ora.com

4. Execute postmap against the clientcerts file:
postmap /etc/postfix/clientcerts

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 13: Transport Layer Security

5. Edit main.cf to add the following parameters:
relay_clientcerts = hash:/etc/postfix/clientcerts
smtpd_tls_ask_ccert = yes
smtpd_recipient_restrictions =
 permit_mynetworks
 permit_tls_clientcerts
 reject_unauth_destination

Note that smtpd_tls_ask_ccert has two c’s for “client certificate.” If you
have already defined the smtpd_recipient_restrictions parameter, add
permit_tls_clientcerts to the list of restriction rules.

6. Reload Postfix so that it recognizes the changes in its main.cf configuration file:
postfix reload

Configuring TLS/SMTP Client
Since you may have configurations where other email servers require your server to
authenticate when relaying mail, Postfix/TLS can also present a certificate when act-
ing as an SMTP client. Note that you are limited to only one certificate for your
SMTP client unless you set up additional SMTP transports in master.cf and config-
ure them to use different client keys and certificates.

If you are using a self-signed server certificate, you can use the same certificate and
its accompanying secret key as your client certificate. If a third-party CA signed your
server certificate, it’s possible that it can be used only for the SMTP server. In which
case, you can generate a separate client certificate and have that signed too. Your cli-
ent certificate’s common name should match the hostname of your system, as speci-
fied in the myhostname parameter. Follow the same procedure that you used to create
the server certificates. If you are using the same certificates, you don’t have to do
anything; simply configure the TLS client parameters to point to the same files as the
server parameters.

The TLS patches for Postfix introduce the following parameters for dealing with TLS
within the SMTP client. See the sample configuration file that comes with the TLS
distribution for additional TLS parameters:

smtp_use_tls
Turns on client TLS support. Otherwise, Postfix operates as it would without
the TLS patch. Example: smtp_use_tls = yes

smtp_tls_key_file
Points to the file containing the private key used in conjunction with your client-
signed certificate. Example: smtp_tls_key_file = /etc/postfix/mailkey.pem

smtp_tls_cert_file
Points to the file containing your client-signed certificate. Example: smtp_tls_
cert_file = /etc/postfix/mail_signed_cert.pem

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

TLS Certificates | 173

smtp_tls_CAfile
Points to the file containing the public certificates identifying the CAs that signed
your client certificate. Example: smtp_tls_CAfile = /etc/postfix/CAcert.pem

Assuming that you are using the same certificates that you used for your server, the
procedure to enable TLS in the SMTP client is quite simple:

1. Edit main.cf and set the following parameters:
smtp_use_tls = yes
smtp_tls_key_file = /etc/postfix/mailkey.pem
smtp_tls_cert_file = /etc/postfix/mail_signed_cert.pem
smtp_tls_CAfile = /etc/postfix/cacert.pem

If there are other TLS parameters that you want to set, do so here (see the TLS
patches documentation).

2. Reload Postfix so that it recognizes the changes in its main.cf configuration file:
postfix reload

Now, when Postfix connects to an SMTP server that requests a client certificate, it
will provide the necessary information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

174

Chapter 14CHAPTER 14

Content Filtering

A content filter is a utility that scans the headers and body of an email message, and
usually takes some action based on what it finds. The most common examples are
anti-virus and anti-spam programs. Viruses are commonly spread within the con-
tents of email messages, and if you cannot detect spam based on the connecting cli-
ent or envelope information, you might have better luck by inspecting the actual
contents of a message. Filters might change messages, redirect them, respond to
them, or tag them for later processing by another tool.

In this chapter we’ll look at content filtering at your mail server, although that may
not always be your best option for filtering. MTA filtering is appropriate for filtering
that should occur with all or nearly all messages. If you need filtering that is config-
urable by user, the MTA is not the best choice for it. Other types of filtering to con-
sider are:

Mail delivery agent (MDA)
Configurable MDAs such as procmail or sieve allow users to manage their own
delivery configuration files. Generally, MDAs expect your users to edit their own
configuration files on the mail server system. If they don’t have system accounts,
you must provide another means for them to configure their filtering, such as
through a web-based application.

Mail user agent (MUA)
You might also consider allowing your users to take advantage of filtering capa-
bilities within their email clients. If their client packages support filtering, this is
an excellent way to provide per-user filtering for virtual users that don’t have sys-
tem accounts on your mail server. It has the added advantage of moving proces-
sor- and memory-intensive scanning from the server out to multiple clients.

Postfix body and header checks
Postfix body and header checks can provide limited filtering. They cannot be
configured by the user, but they are probably the simplest to implement. See
Chapter 11 for information about setting them up.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Command-Based Filtering | 175

A combination of MTA and MUA filters might make a nice compromise. The MTA
filter can tag messages with a value to be read by users’ MUA filters. Users can then
configure their own filters to accept, reject, or categorize messages based on the
tagged value.

An anti-virus filter is an excellent choice for MTA filtering. You can maintain it cen-
trally and block viruses before they even enter your network. Actions that should
occur for every message that enters your system are best handled by the MTA.

Postfix body and header checks, while powerful, can consider only one line of a mes-
sage at a time, and they’re always applied to all messages. They don’t offer a conve-
nient way to set up complex options for rejecting or redirecting messages. Anything
more than simple filtering should probably not be handled within a general MTA
like Postfix.

Postfix provides two approaches for configuring external filters: commands that
accept the contents of email messages on their standard input or daemons that
accept message contents via SMTP or LMTP. With commands, a new process is
started for every message, which can be resource-intensive, particularly if the com-
mand has a high start-up cost. Daemon filters stay resident and have the potential for
better performance using fewer system resources. The daemon method is somewhat
more complicated to configure but provides a more robust solution.

Command-Based Filtering
The simplest way to set up content filtering is to use a program that runs as a com-
mand and accepts the contents of a message on its standard input. Postfix delivers
messages to your filter command via the pipe mailer. Your filter command performs
its checking and then gives the filtered message back to Postfix using the Postfix
sendmail command.

For this discussion, we’ll assume that the filter command operates on mail that
comes in through the SMTP daemon but not on mail that is delivered locally (using
the sendmail command), so that your filter can use sendmail to give the message back
to Postfix without looping. Figure 14-1 illustrates the path messages follow once you
put your filter in place. Rather than passing the message to a delivery agent, the
queue manager invokes the filter.

Your filter program must be able to accept the message on its standard input and
then deliver it to the Postfix sendmail command. If you have a filtering program that
doesn’t handle input and output in this way it should be easy enough to create a
shell script wrapper to deal with those details. In the Postfix distribution, the
FILTER_README file contains an example of such a script.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

176 | Chapter 14: Content Filtering

Configuration
When you configure Postfix to use your filter program, you must specify a user that
the program runs as. You should create a pseudoaccount whose sole purpose is to
run the filter.

Let’s set up an example configuration and assume that you have a filter program
named simple_filt stored at /usr/local/bin and that you have created a pseudouser
called filter to run it. Edit your master.cf file to add an entry for your filter:

filter unix - n n - - pipe
 flags=Rq user=filter argv=/usr/local/bin/simple_filt
 -f ${sender} -- ${recipient}

The first line contains all of the standard settings for a Postfix component entry with
the last column indicating that the message should be handled by the Postfix pipe
daemon. The second and third lines are a continuation of the first because of the
whitespace at the beginning. They contain options the pipe service will use when
executing the command. The options R and q, specified as flags, tell the pipe service
to prepend a Return-Path: header and to quote whitespace and special characters in
the ${sender} and ${recipient} addresses that are passed to the command. See the
pipe(8) man page for other possible options.

The user= option is the filter pseudouser that you set up for running your filter com-
mand. The argv option specifies the actual command along with its arguments to exe-
cute. The argument list specified here (-f ${sender} -- ${recipient}) can be used
exactly as is by the script when it invokes the sendmail command to deliver the mes-
sage back to Postfix. Your own filter may require different arguments, but make sure
you include the items you need to send the message back to Postfix through the
sendmail command. The ${recipient} variable is expanded by the pipe daemon into

Figure 14-1. Mail-filtering command

Postfix

SMTP
server smtpd queue

manager

pipe sendmail

filter
command

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Daemon-Based Filtering | 177

multiple recipients up to the limit specified in the filter_destination_recipient_limit
parameter when a message has more than one recipient.

In addition to the new component entry, you must also make a change to the smtpd
entry in master.cf to turn on filtering for all messages that are delivered to the SMTP
daemon:

smtp inet n - n - - smtpd
 -o content_filter=filter:

Simply add the second line in the preceding example to your existing smtpd line.
Don’t forget the initial whitespace to indicate that it is a continuation of the previ-
ous line. The content_filter parameter is set equal to the entry you just created in
master.cf for your filter program. Set this option here rather than in main.cf because
it should apply to the smtpd daemon only and not for every message that enters the
Postfix system. After you reload Postfix, all messages coming in over SMTP will now
be handled by your filter program.

A filter of this sort, although easy to configure, is not the most efficient method of fil-
tering. It requires that Postfix invoke a shell or interpreter and that the filter invoke
sendmail to resubmit the filtered message. If your program runs into problems—disk
space or memory—for example, there isn’t a reliable way for it to report the exact
problem back to Postfix. Daemon-based filtering described in the next section offers
a more robust solution with better performance.*

Daemon-Based Filtering
Daemon-based filtering offers a more advanced architecture over the command-
based method with lower cost in I/O and CPU usage. It can provide better error han-
dling than is possible with the command method. If implemented as a resident pro-
cess, the startup overhead per message is eliminated. A daemon-based content filter
can pass email messages back and forth with Postfix using the standard SMTP or
LMTP protocol. Such a filter can run as a standalone daemon or it can be started by
Postfix if configured to do so in master.cf.

In this configuration, we want the content filter to handle all messages, whether
delivered locally (via sendmail) or to the smtpd daemon. You have to configure Post-
fix in master.cf to use a special smtp client component to deliver the messages to your
filter and an additional smtpd daemon to receive messages back from your filter.
Figure 14-2 illustrates how a filtered message travels through Postfix to your content
filter and back into Postfix for delivery. In this diagram, the filter receives mail via
localhost port 10025 from the additional smtp client and submits it back to Postfix
via localhost port 10026 to the additional smtpd server component.

* All else being equal. The performance depends largely on the content-filtering program itself.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

178 | Chapter 14: Content Filtering

If the filter wants to reject a message, it should reply with an SMTP code of 550 along
with the reason for the rejection. Otherwise, it should accept the message and per-
form its operations before passing it back to Postfix. If your filter rejects a message,
Postfix bounces it back to the sender address with the message your filter provides.

Configuration
For the purposes of this discussion, I’ll assume that you are running a standalone
content filter daemon that listens for incoming messages using SMTP. After process-
ing, it sends the message back to Postfix using SMTP. The basic steps to configure
this setup are:

1. Create a pseudoaccount for your filter.

2. Install and configure your content filter.

3. Edit master.cf to add two additional Postfix components.

4. Edit main.cf to add the content_filter parameter.

5. Restart Postfix so that it recognizes the changes to its configuration files.

When setting up a daemon-based content filter, make sure it does not use the same
hostname that Postfix has set in its myhostname parameter, or the Postfix SMTP client
will consider it an error and not deliver the message to your filter. The rest of this
section walks you through the details of setting up a daemon-based content filter.

Creating a pseudoaccount

As with the simple filtering solution described earlier, you should create a pseudoaccount
for your filter. The account shouldn’t have access to other resources on your system. If
your filter needs to write files, you should create a directory for that purpose. Your filter

Figure 14-2. Mail-filtering daemon

Postfix

SMTP
server smtpd 1 queue

manager

chkmsg
smtp smtpd 2

filter
daemon

sendmail

25

10026

10025

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Daemon-Based Filtering | 179

should be started as the designated user or configured to become that user after starting.
Check your filter’s configuration options. For this example, I’ll assume that you’ve cre-
ated a user called filter.

Installing a content filter

Your content filter package should provide you with instructions for installation and
configuration. In this example, assume that the filter listens on the loopback inter-
face on port 10025. After processing messages, the filter should pass them back to
Postfix on port 10026. You should be able to configure your filter accordingly, or if
your filter listens and reinjects on a different port, keep that in mind as you follow
the example. If possible, test your filter first to make sure that it operates correctly
before trying to connect it to Postfix.

Configuring additional Postfix components

You may encounter “mail loops back to myself” problems when creating additional
SMTP components. One solution is to give the additional component a different
value for myhostname.

Edit master.cf to add the new components you need. A second smtp component will
be used to send messages to your content filter. (See “master.cf” in Chapter 4 for
more information on editing master.cf.) We’ll call this additional smtp entry chkmsg:

chkmsg unix - - n - 10 smtp
 -o myhostname=localhost

Later, when you turn on content filtering in main.cf, you’ll tell Postfix to send the
message to your filter on port 10025 using this component.

In addition to the extra smtp client, you also need a second smtpd service to receive mes-
sages back from the content filter program. The second smtpd instance is configured
slightly differently from the normal one because you want Postfix to handle traffic from
your filter differently from messages coming from outside. Set options with an entry
like the following:

localhost:10026 inet n - n - 10 smtpd
 -o content_filter=
 -o local_recipient_maps=
 -o mynetworks=127.0.0.0/8
 -o smtpd_helo_restrictions=
 -o smtpd_client_restrictions=
 -o smtpd_sender_restrictions=
 -o smtpd_recipient_restrictions=permit_mynetworks,reject

This instance of smtpd is configured to listen on the loopback interface on port
10026. You configure your filter to send the processed messages to this service.
There are several options in this example. These override the settings in the main.cf
file and are explained below:

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

180 | Chapter 14: Content Filtering

content_filter
The default smtpd instance has content filtering turned on in main.cf. This
instance of smtpd should not have the content filter process messages again.

local_recipient_maps
Some lookup maps convert an address when it is received by the external smtpd.
When your filter tries to reinject it, Postfix may not recognize the recipient and
reject the message. Set this option to blank to make sure the filtered messages
are always accepted from your filter.

mynetworks
Since your filter runs on the same system as Postfix, the filter and Postfix can
communicate over the local loopback interface, a pseudonetwork device not
associated with any real hardware interface. The loopback interface always uses
an address of 127.0.0.1. Since 127 is the first byte of its address, it’s a class A
network that you identify with a /8 network prefix. By setting mynetworks to the
loopback network and smtpd_recipient_restrictions to permit only this net-
work, this instance of smtpd accepts connections from your filter only and isn’t
exposed to any (potentially hostile) traffic from the network.

smtpd_helo_restrictions, smtpd_client_restrictions, smtpd_sender_restrictions
You can turn off any restrictions that were already checked by the original smtpd
instance. If you’re not already using these restrictions in main.cf, you don’t need
to turn them off here.

smtpd_recipient_restrictions
Finally, tell smtpd to accept connections on the loopback interface and reject
everything else.

Turning on filtering

After you have made the necessary changes to master.cf, you have to configure Post-
fix to pass all messages it receives to your content filter. Edit the main.cf file to add a
line like the following:

content_filter = chkmsg:[127.0.0.1]:10025

This parameter tells Postfix to pass messages to the content filter via the chkmsg ser-
vice that you created in master.cf. You also tell it to send the messages to port 10025,
which should match what you have configured your content filter program to use. Be
sure to reload Postfix to recognize the changes in its configuration files. Once Postfix
is reloaded, it will start passing all messages through your content filter for processing.

Daemon-Based Filter Example
To demonstrate setting up a daemon-based content filter, this section walks
through installing Vexira AntiVirus from Central Command. Vexira is a commer-
cial anti-virus product available on the Central Command web page, http://www.
centralcommand.com/. Its Vexira AntiVirus for Mail servers product is written to

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Other Considerations | 181

work with Postfix among other MTAs. It is available for Linux, FreeBSD, and
OpenBSD platforms. If you are using a different daemon-based anti-virus solu-
tion, the configuration should be similar to the procedure presented here:

1. Install Vexira according to the documentation from Command Central. The rest
of this procedure assumes that your configuration files are in /etc per the installa-
tion instructions.

2. Configure Vexira to listen on the local loopback interface on port 10024. Edit
/etc/vamailarmor.conf and set the parameter ListenAddress as follows:

ListenAddress localhost port 10024

3. Also set the ForwardTo parameter to pass messages back to Postfix over the loop-
back interface on port 10025:

ForwardTo SMTP: localhost port 10025

4. Restart Vexira using the method or scripts installed on your system. See your
Vexira documentation.

5. Edit the Postfix main.cf file to have all messages sent to the Vexira daemon for
virus scanning. Edit the content_filter parameter as follows:

content_filter = smtp:[127.0.0.1]:10024

6. Edit the Postfix master.cf file to add another SMTP daemon to accept messages
back from Vexira after virus scanning:

localhost:10025 inet n - n - 10 smtpd
 -o content_filter=
 -o local_recipient_maps=
 -o mynetworks=127.0.0.0/8
 -o smtpd_helo_restrictions=
 -o smtpd_client_restrictions=
 -o smtpd_sender_restrictions=
 -o smtpd_recipient_restrictions=permit_mynetworks,reject

7. Reload Postfix so that it recognizes the changes in its configuration files:
postfix reload

Other Considerations
You can run multiple content filters, if necessary, by chaining them. If, for example,
you have both an anti-virus and an anti-spam content filter, simply configure the first
one to deliver to the next one rather than immediately back to Postfix. The Postfix
configuration doesn’t have to change from what’s presented here. Only the final fil-
ter delivers the message back to Postfix.

Be aware of any email address rewriting that occurs before your filter receives a mes-
sage. When the filter resubmits a message, if the rewritten address isn’t in one of the
recipient maps, Postfix will reject it. You may have to turn off address rewriting in
your normal SMTP server and configure it instead in your SMTP server that accepts
messages back from your filter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

182 | Chapter 14: Content Filtering

Some filters recommend that you configure them to accept mail in front of your
normal MTA, and then they pass the messages on to your MTA after processing.
You probably do not want to do this. Postfix is specifically designed to accept mes-
sages over an unfriendly network. A content filter is specifically designed to deal
with processing the contents of messages and probably isn’t optimized for dealing
with the load and potential hazards of accepting connections from the outside.
Likewise some filters want to handle the final delivery of messages without re-
injecting them into Postfix. Again, Postfix offers a lot of flexibility and security in
dealing with the final disposition of messages that you might lose by delegating the
delivery to another package.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

183

Chapter 15 CHAPTER 15

External Databases

Postfix map files provide an easy and efficient mechanism for the many lookup oper-
ations needed when handling email. In some situations, however, it can be more con-
venient to have the information in a database separate from Postfix. A database can
provide a central repository available to many system or network services that need
similar information, such as account names and passwords. A database can be use-
ful when redundant systems running Postfix need to share the same configuration
information. A central database might also be more convenient when you have mul-
tiple people who need access to edit information.

Databases can also slow Postfix performance compared to normal index files. In gen-
eral, if you don’t have a definite need for a database, you’re better off with the stan-
dard Postfix maps. In many cases you can get the best of both options by storing
information in a database and running regular scripts that update your Postfix files
from the central data repository. But if your environment requires instant access to
revised data, an external database configuration may be your only option.

In this chapter, we’ll look at configuring Postfix to work with MySQL and LDAP.
(Postfix also has support for PostgreSQL as of Version 2.1.) In either case, Postfix
must be compiled with additional libraries to support the mysql and ldap map types.
If you are using a prebuilt package, make sure that it has support for the type of data-
base you plan to use. If you built your own Postfix, see Chapter 15 for information
on compiling with the additional libraries.

You can easily check if your Postfix installation contains support for LDAP and
MySQL with the postconf -m command:

$ postconf -m
static
pcre
regexp
mysql
environ
proxy
ldap

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

184 | Chapter 15: External Databases

btree
unix
hash

You should see either ldap or mysql or both listed among the map types.

While the databases you use with Postfix may contain a variety of information, con-
ceptually they work the same as Postfix maps. You have a key such as the recipient
email address, and you expect to get back a value associated with the key such as a
forwarding address. How to perform this with each type of database, MySQL and
LDAP, is explained in the next sections.

It is a good practice to make sure your lookups work correctly with normal Postfix
lookup tables. Then duplicate your configuration with MySQL or LDAP lookups.
Make sure that you get the same results from both. In most cases, Postfix expects a
lookup to return only one result. Make sure that your database queries do not return
multiple result values.

MySQL
MySQL is an open source relational database system that uses Structured Query Lan-
guage (SQL) for querying and managing its data. You don’t have to know SQL to use
Postfix with MySQL, but it will help to understand how they interact. Normally, you
would use MySQL because you already have a database of information about each
user such as a full name, account name, phone numbers, etc. You have to make sure
your database includes the information you need to accomplish a particular task
with Postfix. A common use is to map an email alias to the local account name. For
this to work there must be one database column containing email aliases and another
with local account names. Postfix can query your database with the recipient address
of an email message as the key to look up the value of the local account for delivery.
Any of the Postfix lookup table parameters can work with MySQL queries. You just
have to figure out which columns contain the information you need.

MySQL Configuration
MySQL maps are specified like any other map in Postfix. You specify the map type
and the file containing the mappings. In the case of MySQL, however, the file you
specify is not the lookup map itself, but rather a file that contains configuration
information that specifies how to get the desired value from your database:

alias_maps = mysql:/etc/postfix/mysql-aliases.cf

The file mysql-aliases.cf contains configuration information that specifies how to get
the information from MySQL. The parameters for this file are explained below.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

MySQL | 185

MySQL parameters

MySQL parameters provide the information necessary for Postfix to connect to your
database server and construct an SQL statement to look up the data it needs. These
parameters are placed in a MySQL map configuration file that functions like a Post-
fix configuration file with blanks and comments ignored. Comments are marked by a
as the first character of a line. You can have as many MySQL configuration files as
needed in place of normal Postfix lookup files. All of the MySQL parameters pre-
sented here are required except for additional_conditions.

Figure 15-1 shows an SQL statement that Postfix creates using the parameters
described.

hosts
List of hostnames or IP addresses where a MySQL server is running. You can
also indicate a Unix domain socket by preceding a path to a socket with unix:.
You should list more than one host or socket only if you have multiple redun-
dant database servers. Each host is tried in the order listed until a successful
query can be made. For example:

hosts = unix:/tmp/mysql.sock, db.example.com, 192.168.150.15

user
Account name to use when logging into the MySQL server.

password
Password to use when logging into the MySQL server.

dbname
The name of the database to use for the query.

table
The name of the table to use for the query.

select_field
The name of the column that contains the lookup value.

where_field
The name of the column that contains the key value.

Figure 15-1. Sample SQL statement

SELECT to_address FROM user_accounts

where_field

WHERE local_name = 'kdent' AND type = 'forward'

additional_conditions<key supplied by Postfix>

select_field table

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

186 | Chapter 15: External Databases

additional_conditions
Additional comparisons for the WHERE clause of the SQL statement built by
Postfix. You must understand SQL to use this attribute. Set this parameter as if
you are continuing the SQL statement. For example:

additional_conditions = and mail_type = 'local'

MySQL Example
Let’s go through an example illustrating a MySQL and Postfix configuration. The
example.com site uses a MySQL database to manage all of the users on its network.
There is a database that contains a variety of information about users on the net-
work, including names, phone numbers, etc. Among the tables in the database is
one called email_address, which contains the pertinent information for configuring
Postfix. The database structure looks like the following:

+-----------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+-------------+------+-----+---------+-------+
localpart	varchar(15)		PRI		
type	varchar(15)	YES		NULL	
to_address	varchar(65)	YES		NULL	
password	varchar(65)	YES		NULL	
last_changed_by	varchar(15)	YES		NULL	
+-----------------+-------------+------+-----+---------+-------+

This table contains all of the email addresses that Postfix should accept mail for with
the localpart column providing the local part of the addresses. Some of the users
maintain their primary email accounts on other systems, so their example.com
addresses are aliases that forward messages to their primary email addresses else-
where. The type column indicates whether an address is delivered locally or for-
warded to another address. The value forward indicates that this address is an alias.
If an address is forwarded, the to_address column contains the address to forward
messages to.

Table 15-1 contains the access information needed to configure Postfix in this sce-
nario. You should collect the same information about your own database before
starting to configure Postfix.

Table 15-1. MySQL database information for Postfix configuration

Access information: Values

Host mysql.example.com

Database name: user_accounts

Database table: email_address

Database user: kdent

Database password: Rumpelstiltskin

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

MySQL | 187

In addition to the general database information in Table 15-1, you will have to deter-
mine the columns you need for the particular Postfix maps you are replacing with
your MySQL table. Example 15-1 shows a sample record from the database with the
relevant columns for this configuration. In this example, you’ll be configuring the
Postfix parameters local_recipient_maps and alias_maps.

Configuring local_recipient_maps

The local_recipient_maps parameter points to lists of local users that should receive
email at this system. By default it points to the user accounts and aliases on the sys-
tem, so that mail sent to a nonexistent user is rejected by the SMTP server. This
lookup map is a bit different from others in that it doesn’t require a return value to
map to. It matters only that the recipient is in the lookup table or not. In this exam-
ple, the MySQL database contains the list of all email accounts that should receive
mail on the system. You can point the local_recipient_maps parameter to a MySQL
configuration that extracts the list of email users. You’ll use a file called mysql-local.
cf for the query configuration. First, set local_recipient_maps to point to the query
configuration file, indicating that the lookup type is mysql:

local_recipient_maps = mysql:/etc/postfix/mysql-local.cf

The file mysql-local.cf contains parameters for each of the items listed in Table 15-1,
plus the select_field and where_field for this specific query:

#
mysql-local.cf - local recipients for mail server.
#
hosts = mysql.example.com
user = kdent
password = Rumpelstiltskin

dbname = user_accounts
table = email_address

select_field = localpart
where_field = localpart

The select_field and where_field both point to the localpart column. The
select_field in this case is not particularly important since you don’t need a value
back from the map. You don’t need the additional_conditions parameter because
you want every record that appears in the table. After reloading, Postfix uses the

Example 15-1. Sample record from email_address table

+------------+----------+-------------------+
| localpart | type | to_address |
+------------+----------+-------------------+
| kdent | forward | kyle.dent@ora.com |
+------------+----------+-------------------+

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

188 | Chapter 15: External Databases

MySQL configuration to determine local users and reject mail for recipients not
listed in the MySQL table.

You can easily check your MySQL configuration file with the postmap command:

$ postmap -q 'kdent' mysql:/etc/postfix/mysql-local.cf
kdent

The -q option tells postmap to query the map using the specified key. If your query
has any problems, postmap reports them to your terminal.

Configuring alias_maps

Some users do not receive their mail on this system, but rather have it forwarded to
another account. By pointing alias_maps to another MySQL configuration, you can
obtain the list of users that have aliases and determine what the forwarding address
is. You’ll use a file called mysql-alias.cf for this query configuration. First, set the
alias_maps parameter to point to the query configuration file:

alias_maps = mysql:/etc/postfix/mysql-alias.cf

The mysql-alias.cf file contains the following parameters:

#
mysql-alias.cf - forwarding aliases
#
hosts = mysql.example.com
user = kdent
password = Rumpelstiltskin

dbname = user_accounts
table = email_address

select_field = to_address
where_field = localpart

additional_conditions = and type = 'forward'

In this case, you set the select_field to to_address since that’s the value needed by
alias_maps to forward messages. You also specified additional_conditions because
you want only the addresses that have aliases. After reloading Postfix, it uses this
MySQL configuration to determine addresses with aliases and where messages
should be forwarded.

Configuring virtual domains

MySQL databases are often used by sites that host many virtual domains. This last
MySQL example walks through configuring virtual mailbox domains. Be sure to read
Chapter 8 for information about virtual hosting in general, as this section discusses
only the MySQL configuration.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

MySQL | 189

In this example, you’ll use a table called email_address from a database called
customer. The table contains a record for every virtual address at all the domains the
system accepts mail for. It includes the following fields that are of interest:

domain
The virtual domain name for this record.

mail_address
The public email address that messages can be sent to. Messages are delivered to
the local virtual mail store.

mailbox
Contains the filename for delivery into the local mail store. The name should be
relative to the path set in virtual_mailbox_base. You can append the name with
a slash for maildir-style delivery.

Example 15-2 shows a sample record from the database with the relevant columns.

In this example, all virtual deliveries occur under the same user and group, vmail:
vmail. If you require different user and group privileges for the different users or
domains, you should have additional columns for uid and gid in your table and then
create mysql maps for them as well.

You are using a static uid and gid for deliveries and your message store is simply a
directory on the local filesystem:

virtual_mailbox_base = /usr/local/vmail
virtual_uid_maps = static:1003
virtual_gid_maps = static:1003

The list of virtual domains and mailbox maps comes from two MySQL configura-
tion files:

virtual_mailbox_domains = mysql:/etc/postfix/virtual_domains.cf
virtual_mailbox_maps = mysql:/etc/postfix/virtual_mailboxes.cf

The virtual_mailboxes.cf configuration maps email addresses to the mail store file
where messages should be delivered:

hosts = mysql.example.com
user = kdent
password = Rumpelstiltskin

dbname = customer
table = email_address
select_field = mailbox
where_field = mail_address

Example 15-2. Sample record for virtual mailbox alias

+------------+---------------+---------------+
| domain | mail_address | mailbox |
+------------+---------------+---------------+
| ora.com | kdent@ora.com | ora.com/kdent |
+------------+---------------+---------------+

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

190 | Chapter 15: External Databases

LDAP
LDAP is a protocol that provides access to directories of information. LDAP directo-
ries are composed of entries that are organized into hierarchies. You have to under-
stand how LDAP works and how your own directory is organized to use it with
Postfix. Many networks are starting to make use of LDAP for user information,
which makes it a nice way for Postfix to determine what users and addresses it
should accept mail for. If your organization uses an LDAP directory, you can query
your existing information for your Postfix configuration.

LDAP Configuration
LDAP maps are specified with the ldap map type and can be listed along with any
other maps for a given parameter. Unlike MySQL, LDAP parameters are all listed in
main.cf. You have to invent a name for the particular LDAP configuration you are
creating and specify it with the ldap map type. If you call your LDAP configuration
ldapaliases, for example, set your alias maps like this:

alias_maps = ldap:ldapaliases

The LDAP parameters for this configuration all start with the name you invented fol-
lowed by the name of the parameter. Thus, the LDAP server is identified by the
parameter name_server_host, so for the example above, the parameter is called
ldapaliases_server_host:

ldapaliases_server_host = ldap.example.com

The important LDAP parameters are defined below. The complete list is available in
the LDAP_README file that comes with the Postfix distribution:

name_search_base
The base DN from which to start the search. You have to know the naming con-
text for your directory so that you can specify the common container for your
entries. Often it is the root of the directory. Example: ldapaliases_search_base =
dc=example, dc=com

name_scope
The scope of the search. There are three possible options for the scope: sub,
base, and one. Your directory hierarchy determines which value you need. The
base option is rarely useful. With sub the entire tree under the base is searched,
and with one only direct child nodes are searched. The _scope parameter defaults
to sub if you don’t specify another value. Example: ldapaliases_scope = one

name_query_filter
The attributes and values that should form your search filter. The variable %s can
be used as a placeholder for the current recipient email address. Example:
ldapaliases_query_filter = (mailType=forward)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP | 191

name_result_attribute
The attribute containing the value you want returned for this lookup. You can
list multiple attributes in order of preference. Example: ldapaliases_result_
attribute = email, rfc822Mailbox.

LDAP Example
A common use of LDAP with Postfix is to protect an internal mail server on a net-
work that uses an LDAP directory of user accounts. Postfix resides on a gateway sys-
tem accepting messages from the Internet, and relays them to the internal mail
server. You want Postfix to reject messages for unknown users on the network so
that they are never accepted on your network. By setting the local_recipient_maps
parameter to query the LDAP directory, you can configure Postfix so that it knows
about all of the user accounts and can reject mail for nonexistent accounts. On a
large network there may be different mail systems serving different groups of users.
You can also set up Postfix to forward messages to the correct mail server for a par-
ticular user by setting transport_maps to point email addresses to the correct internal
mail servers.

The LDAP directory includes attributes for mail and mailHost, where mail contains
the public email address for a user and mailHost is the internal server to which mes-
sages should be forwarded. A sample item in the directory looks like the following:

dn: uid=kdent,ou=people,dc=example,dc=com
uid: kdent
cn: Kyle D. Dent
mail: kyle.dent@example.com
uidNumber: 1001
gidNumber: 1001
mailHost: mail1.example.com
homeDirectory: /home/kdent
mailType: forward
objectClass: people
userPassword: {crypt}hidden
accountStatus: active

Table 15-2 contains the LDAP directory information you need to configure Postfix in
this scenario. You should collect the hostname and base DN for your own directory
before starting to configure Postfix.

Table 15-2. LDAP directory information for Postfix configuration

Directory information Values

Host ldap.example.com

Base DN: dc=example,dc=com

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

192 | Chapter 15: External Databases

For the local_recipient_maps lookup, you only have to know that an address exists
in the mail attribute. For forwarding messages to the correct internal mail server, you
need the value from the mailHost attribute.

Configuring local_recipient_maps

The local_recipient_maps parameter points to lists of local users that should receive
email at this system. By default it points to the user accounts and aliases that exist on
the system, so that mail sent to a nonexistent user is rejected by Postfix. In this exam-
ple, the LDAP directory contains the list of all email accounts that should receive mail
on the system. You can set up an ldap lookup map for local_recipient_maps. In the
case of local_recipient_maps, the value returned is not used for anything because you
only need to know if the email address exists or not. Use an LDAP configuration called
“ldaplocal.” First, set local_recipient_maps to use this configuration:

local_recipient_maps = ldap:ldaplocal

The rest of the LDAP parameters for this configuration are set as follows:

ldaplocal_server_host = ldap.example.com
ldaplocal_search_base = dc=example, dc=com
ldaplocal_query_filter = (&(mail=%s)(accountStatus=active))
ldaplocal_result_attribute = uid

The ldaplocal_query_filter parameter compares the recipient email address to the
mail attribute in the directory. It also checks to make sure that the accountStatus
attribute is set to active. The result attribute is set to uid. For this lookup, you only
need to know that the item exists, but Postfix does require a non-blank result for the
lookup.

After reloading Postfix, it uses the LDAP configuration to determine local users and
reject mail for recipients not listed in the LDAP directory.

You can easily check your LDAP configuration file with the postmap command:

$ postmap -q 'kdent' ldap:ldaplocal
kdent

The -q option tells postmap to query the map using the specified key. If your query
has any problems, postmap reports them to your terminal.

Configuring transport_maps

When messages received by Postfix have to be relayed to the correct internal mail
server, use transport_maps. Set transport_maps to use a new LDAP configuration
called “ldaptransport”:

transport_maps = ldap:ldaptransport

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

LDAP | 193

Because the LDAP directory returns just the name of the host, and you need a trans-
port value (transport:nexthop), you can use the _result_filter parameter to specify
a template for the results:

ldaptransport_result_filter = relay:%s

Also, configure the following parameters:

ldaptransport_server_host = ldap.example.com
ldaptransport_search_base = dc=example, dc=com
ldaptransport_query_filter = (&(mail=%s)(accountStatus=active))
ldaptransport_result_attribute = mailHost

Again, the ldaplocal_query_filter parameter compares the recipient email address
to the mail attribute in the directory and checks to make sure that the accountStatus
attribute is set to active. The result attribute is the value for the mailHost attribute,
which is the email server that should receive messages for the specified user. The
result is expanded in the template specified in ldaptransport_result_filter.

Be sure to reload Postfix for the new ldap transport map to go into effect.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

195

Appendix A APPENDIX A

Configuration Parameters

This appendix contains an alphabetical listing of parameters normally configured in
the Postfix main.cf file. The brief descriptions are only meant to give you an idea of
the purpose of the parameter. All of the parameters are fully documented in the sam-
ple configuration files and manpages that come with the Postfix distribution. This
quick reference can point you in the right direction, but you will have to consult the
body of this book or the online documentation to understand how each parameter
works.

All of the parameters are listed with a type of value that should be assigned to it.
Most of the value types are obvious. Those that require some explanation are
described here:

Explicit list
The parameter requires one or more items from a specific list of possible values.
See the online documentation for a particular parameter to see what the possi-
ble values are.

Lookup tables
When a parameter points to lookup tables, the tables are specified with their
map type and the table name separated by a colon:

transport_map = hash:/etc/postfix/transport

Pathname
The complete path to a file.

Template
Some parameter values are specified as strings that contain macros:

smtpd_banner = $myhostname ESMTP $mail_name

The macros are expanded into their values at the time the parameter is used. See
the online documentation to find out what macros are allowed for a particular
template parameter.

Time units
Many parameters are specified as an amount of time:

queue_run_delay = 1000s

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

196 | Appendix A: Configuration Parameters

They are assigned a value and a time unit abbreviation. Time unit abbreviations
are listed in Table A-1. If you leave off the time unit, each time parameter has a
default unit that it assumes for the value specified. You can check the online
documentation to see what the default unit is for a particular parameter.

All of the parameters have a default value (although for some the default is blank).
Only parameters that differ from their default values have to be specified in main.cf.
The parameters are listed here with their default values, but they sometimes change
with Postfix releases. You can check the default value for a parameter with the
postconf command and its -d option:

$ postconf -d alias_maps
alias_maps = hash:/etc/aliases, nis:mail.aliases

Postfix Parameter Reference

2bounce_notice_recipient
Possible values: email address Default: postmaster

“2bounce” is one of several possible error classes. Each class of error can optionally
generate an error notice. 2bounce_notice_recipient designates the recipient address for
“2bounce” error notices.

Example: 2bounce_notice_recipient = postmaster

access_map_reject_code
Possible values: reply code Default: 554

SMTP response code sent when a request is rejected because of an access map restriction.

Example: access_map_reject_code = 554

alias_maps
Possible values: alias maps Default: hash:/etc/aliases, nis:mail.aliases

List of alias databases used by the local delivery agent.

Example: alias_maps = hash:/etc/aliases, nis:mail.aliases

Table A-1. Time units

Unit Abbreviation Example

Seconds s 1s

Minutes m 15m

Hours h 4h

Days d 5d

Weeks w 2w

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 197

allow_mail_to_files
Possible values: explicit list Default: alias,forward

Restricts or allows local mail delivery to external files when expanded from an alias file.

Example: allow_mail_to_files = alias, forward

allow_percent_hack
Possible values: yes/no Default: yes

The percent hack is an old workaround that allowed sender-controlled routing of email
messages. Nowadays, DNS and mail routing are much more reliable, but Postfix continues
to support the hack. To turn off percent rewriting, set allow_percent_hack to no.

Example: allow_percent_hack = yes

alternate_config_directories
Possible values: directory Default: (null)

The commands postqueue and postdrop have options to use a different directory when
reading the Postfix configuration file. Any nonstandard directories you plan to use must be
listed in this parameter.

Example: alternate_config_directories = /usr/local/postfix/conf

append_at_myorigin
Possible values: yes/no Default: yes

Expands incomplete email addresses by appending the value from myorigin onto addresses
that consist of a local part only. Changes user to user@host.example.com.

Example: append_at_myorigin = yes

authorized_verp_clients
Possible values: hosts/domains Default: $mynetworks

VERP is a technique used with mailing lists to handle bounced messages. It combines the
list owner address and original recipient address with a special delimiter character.
authorized_verp_clients contains a list of host and domain names and IP addresses of
clients that are allowed to use the feature.

Example: authorized_verp_clients = $mynetworks

berkeley_db_read_buffer_size
Possible values: bytes Default: 131072

Buffer size to use when reading Berkeley DB hash or btree tables.

Example: berkeley_db_read_buffer_size = 131072

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

198 | Appendix A: Configuration Parameters

biff
Possible values: yes/no Default: yes

biff is a small process that can notify local users when new mail has arrived. If you have no
local users, you should turn off biff notifications since they may affect the performance of
the mail server.

Example: biff = yes

body_checks_size_limit
Possible values: bytes Default: 51200

Limit on the amount of a message subject to body_checks filtering.

Example: body_checks_size_limit = 51200

bounce_service_name
Possible values: service Default: bounce

Service the master daemon uses for maintaining log files with status information on
messages that cannot be delivered. You normally do not need to change this parameter.

Example: bounce_service_name = bounce

canonical_maps
Possible values: lookup types Default: (null)

List of lookup tables used to map email addresses to their desired rewritten form.

Example: canonical_maps = hash:/etc/postfix/canonical_maps

command_directory
Possible values: directory Default: /usr/sbin

Location of Postfix administrative command-line tools such as postcat and postqueue.

Example: command_directory = /usr/sbin

command_time_limit
Possible values: time unit Default: 1000s

When the local delivery agent passes messages to a command, Postfix limits the amount of
time the command can execute. command_time_limit indicates the time limit.

Example: command_time_limit = 1000s

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 199

content_filter
Possible values: transport Default: (null)

Transport to be used as a message filter. Postfix passes messages to the named transport.

Example: content_filter = myfilter

daemon_timeout
Possible values: time unit Default: 18000s

Amount of time Postfix daemons spend handling a request. When they exceed the speci-
fied time, they voluntarily die.

Example: daemon_timeout = 18000s

debug_peer_list
Possible values: hosts/domains Default: (null)

For help with troubleshooting, Postfix can increase logging for particular hosts that you
might be having problems with. debug_peer_list specifies a list of one or more hosts,
domains, or regular expression patterns whose logging should be increased by the degree
specified in debug_peer_level.

Example: debug_peer_list = example.com, mail.ora.com

default_destination_concurrency_limit
Possible values: count Default: 20

Postfix allows you to set a limit on the number of simultaneous deliveries to any
transport in master.cf. If you don’t set an explicit limit for a transport, the value in
default_destination_concurrency_limit is used. Note that concurrency limits are per
destination as opposed to process limits, which are per transport.

Example: default_destination_concurrency_limit = 20

default_extra_recipient_limit
Possible values: count Default: 1000

Limit on the number of recipients for a transport when the queue manager preempts
normal delivery with a higher priority transport.

Example: default_extra_recipient_limit = 1000

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

200 | Appendix A: Configuration Parameters

default_process_limit
Possible values: count Default: 100

Process limits can be configured for any transport. If you don’t set an explicit process limit
for a transport, the value in default_process_limit is used. Note that process limits are per
transport as opposed to concurrency limits, which are per destination.

Example: default_process_limit = 100

default_recipient_limit
Possible values: count Default: 10000

Limit on the number of recipients the queue manager stores in memory for a particular
transport.

Example: default_recipient_limit = 10000

default_verp_delimiters
Possible values: characters Default: +=

VERP is a technique used with mailing lists to handle bounced messages. It combines the
list owner address and original recipient address with a special delimiter character. The
default_verp_delimiters parameter specifies which characters to use when constructing
VERP return addresses.

Example: default_verp_delimiters = +=

defer_service_name
Possible values: service Default: defer

Service the master daemon uses for maintaining log files with status information on
messages that cannot be delivered. You normally do not need to change this parameter.

Example: defer_service_name = defer

delay_notice_recipient
Possible values: email address Default: postmaster

“delay” is one of several possible error classes. Each class of error can optionally generate
an error notice. delay_notice_recipient designates the recipient address for “delay” error
notices.

Example: delay_notice_recipient = postmaster

deliver_lock_attempts
Possible values: count Default: 20

Limit on the number of times Postfix tries to acquire an exclusive lock on a mailbox file.

Example: deliver_lock_attempts = 20

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 201

disable_dns_lookups
Possible values: yes/no Default: no

Normally when Postfix determines where to deliver a message, it first looks up the DNS
MX records for the destination domain. If disable_dns_lookups is set, Postfix does not
check for MX records and delivers directly to the A record it finds for the destination
domain.

Example: disable_dns_lookups = no

disable_mime_output_conversion
Possible values: yes/no Default: no

Normally Postfix converts 8-bit MIME format to 7-bit format when a remote system does
not advertise 8-bit MIME support. Set disable_mime_output_conversion to yes to turn off
the normal behavior.

Example: disable_mime_output_conversion = no

disable_vrfy_command
Possible values: yes/no Default: no

Normally Postfix allows the SMTP VRFY command. Set disable_vrfy_command to yes to
disable it.

Example: disable_vrfy_command = no

double_bounce_sender
Possible values: email address Default: double-bounce

A double bounce is produced when the original sender of a message cannot be notified that
the message was not delivered. The double_bounce_sender parameter specifies the sender
address Postfix uses for mail that should be discarded if it cannot be delivered. The speci-
fied address should not be used for anything else since all messages addressed to it are
silently discarded.

Example: double_bounce_sender = double-bounce

empty_address_recipient
Possible values: email address Default: MAILER-DAEMON

The destination address for notifications when mail with a null sender (<>) cannot be
delivered. For example, when a bounce notification, which uses a null sender, cannot be
delivered, it is sent to the address specified in empty_address_recipient.

Example: empty_address_recipient = MAILER-DAEMON

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

202 | Appendix A: Configuration Parameters

error_service_name
Possible values: service Default: error

Service the master daemon uses to generate error reports when a message cannot be deliv-
ered. You normally do not need to change this parameter.

Example: error_service_name = error

export_environment
Possible values: environment variables Default: TZ MAIL_CONFIG

List of environment variables that are exported to external processes such as deliveries to
the pipe service or external commands.

Example: export_environment = TZ, MAIL_CONFIG

fallback_relay
Possible values: hosts/domains Default: (null)

List of IP addresses, hosts, or domains to receive messages when the normal destination is
not found or is not reachable.

Example: fallback_relay = example.com

fast_flush_domains
Possible values: hosts/domains Default: $relay_domains

The fast flush service allows the queue manager to retry immediate delivery of messages for
a particular domain upon request. The fast_flush_domains parameter specifies a list of IP
addresses, hosts, and domains that are eligible for the fast flush service.

Example: fast_flush_domains = $relay_domains

fast_flush_refresh_time
Possible values: time unit Default: 12h

The fast flush service allows the queue manager to retry immediate delivery of messages for
a particular domain upon request. The fast_flush_refresh_time parameter specifies a time
interval for automatically flushing messages that have not otherwise had redelivery
requested.

Example: fast_flush_refresh_time = 12h

fork_attempts
Possible values: count Default: 5

Limit on the number of times Postfix tries to fork a process.

Example: fork_attempts = 5

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 203

forward_expansion_filter
Possible values: characters Default: (see example)

When assigning path names to the forward_path parameter, you can use macros such as
$user that are expanded by Postfix to determine the path for the current message. The
forward_expansion_filter parameter specifies a list of characters that should be allowed
when expanding macros. Characters that are not permitted are replaced by underscores.

Example: forward_expansion_filter =
 1234567890!@%-_=+:,./abcdefghijklmnopqrstuvwxyz\
 ABCDEFGHIJKLMNOPQRSTUVWXYZ

hash_queue_depth
Possible values: count Default: 1

Postfix creates a structure of subdirectories for each of its queues in order to organize
queue files. The hash_queue_depth parameter specifies the number of subdirectory levels
below the queue directories.

Example: hash_queue_depth = 1

header_address_token_limit
Possible values: count Default: 10240

Limit on the number of tokens (every word and every @ or . is a token, as defined in RFC
2822) in header addresses to be rewritten by Postfix. Excess tokens are silently discarded.

Example: header_address_token_limit = 10240

header_size_limit
Possible values: bytes Default: 102400

Limit on the number of characters allowed in a message header. Excess text is silently
discarded.

Example: header_size_limit = 102400

home_mailbox
Possible values: pathname Default: (null)

Postfix normally delivers messages to mailbox files in the mail spool. You can change the
delivery to mailbox files relative to users’ home directories by specifying a path with the
home_mailbox parameter. Include a trailing slash to indicate maildir-style mailboxes.

Example: home_mailbox = Mail/mbox

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

204 | Appendix A: Configuration Parameters

ignore_mx_lookup_error
Possible values: yes/no Default: no

Normally when Postfix gets no response from a nameserver for an MX lookup, it tries again
after some period of time. You can cause immediate lookups of A records by enabling
ignore_mx_lookup_error.

Example: ignore_mx_lookup_error = no

in_flow_delay
Possible values: time unit Default: 1s

Causes Postfix to pause for the specified time before accepting a new message. You would
need to change this parameter only if you are experimenting with performance.

Example: in_flow_delay = 1s

initial_destination_concurrency
Possible values: count Default: 5

Initial number of delivery processes for a particular destination.

Example: initial_destination_concurrency = 5

ipc_idle
Possible values: time unit Default: 100s

Maximum idle time for internal communication channels. Once the maximum time has
been reached, Postfix components disconnect voluntarily.

Example: ipc_idle = 100s

line_length_limit
Possible values: count Default: 2048

Limit on the length of any single line in a message. Lines that exceed the limit are broken
up and reconstructed at delivery time.

Example: line_length_limit = 2048

lmtp_connect_timeout
Possible values: time unit Default: 0s

Limit on the amount of time the LMTP client waits to complete a TCP connection. Set the
parameter to 0 to disable timeouts.

Example: lmtp_connect_timeout = 0

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 205

lmtp_data_init_timeout
Possible values: time unit Default: 120s

Limit on the amount of time the LMTP client waits for a response from the server after
sending the LMTP DATA command.

Example: lmtp_data_init_timeout = 120s

lmtp_lhlo_timeout
Possible values: time unit Default: 300s

Limit on the amount of time the LMTP client waits for a response from the server after
sending the LMTP LHLO command.

Example: lmtp_lhlo_timeout = 300s

lmtp_quit_timeout
Possible values: time unit Default: 300s

Limit on the amount of time the LMTP client waits for a response from the server after
sending the LMTP QUIT command.

Example: lmtp_quit_timeout = 300s

lmtp_rset_timeout
Possible values: time unit Default: 300s

Limit on the amount of time the LMTP client waits for a response from the server after
sending the LMTP RSET command.

Example: lmtp_rset_timeout = 300s

lmtp_tcp_port
Possible values: port number Default: 24

TCP port to use for LMTP connections if the lmtp service is not found in the services
database.

Example: lmtp_tcp_port = 24

local_destination_concurrency_limit
Possible values: count Default: 2

Limit on the number of delivery processes to the same local recipient.

Example: local_destination_concurrency_limit = 2

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

206 | Appendix A: Configuration Parameters

local_recipient_maps
Possible values: lookup tables Default: proxy:unix:passwd.byname $alias_maps

List of lookup tables containing all email addresses that are local. It’s used by the SMTP
server to reject messages for nonexistent users.

Example: local_recipient_maps = unix:passwd.byname $alias_maps

luser_relay
Possible values: email address Default: (null)

Destination address that should receive all messages for unknown recipients.

Example: luser_relay = info

mail_owner
Possible values: username Default: postfix

System username that owns Postfix queue files. It’s also used for running Postfix daemon
processes.

Example: mail_owner = postfix

mail_spool_directory
Possible values: directory Default: (system dependent)

Directory where mailbox files are kept.

Example: mail_spool_directory = /var/mail

mailbox_command
Possible values: pathname Default: (null)

An external command to use for final mailbox delivery. Commonly used for configuring an
external local delivery agent such as procmail.

Example: mailbox_command = /usr/local/bin/procmail

mailbox_delivery_lock
Possible values: explicit list Default: (system dependent)

Locking methods Postfix should use when delivering mail to files.

Example: mailbox_delivery_lock = fcntl, dotlock

mailbox_transport
Possible values: transport Default: (null)

Transport to use for final mailbox delivery.

Example: mailbox_transport = cyrus

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 207

manpage_directory
Possible values: directory Default: (system dependent)

Directory for Postfix manpages.

Example: manpage_directory = /usr/local/man

masquerade_domains
Possible values: domains Default: (null)

Address masquerading hides the names of internal hosts by stripping internal hostnames
off before messages are sent out from a gateway system. The masquerade_domains param-
eter specifies a list of domains that should be subject to address masquerading.

Example: masquerade_domains = example.com

max_idle
Possible values: time unit Default: 100s

Maximum idle time a Postfix daemon process (except the queue manager) waits for a new
request.

Example: max_idle = 100s

maximal_backoff_time
Possible values: time unit Default: 4000s

Maximum time limit for Postfix to attempt redelivery of deferred messages. Each time a
message is deferred, the queue manager increases the amount of time it waits to attempt
delivery of that message again. The calculated increase of time is never allowed to exceed
maximal_backoff_time.

Example: maximal_backoff_time = 4000s

message_size_limit
Possible values: bytes Default: 10240000

Limit on the size of any message your system will accept.

Example: message_size_limit = 10240000

mime_header_checks
Possible values: lookup tables Default: $header_checks

List of lookup tables containing patterns to match against each MIME header of incoming
email messages. Each pattern is listed with the action to take if there is a match.

Example: mime_header_checks = regexp:/etc/postfix/mime_header_checks

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

208 | Appendix A: Configuration Parameters

minimal_backoff_time
Possible values: time unit Default: 1000s

Minimum time limit on how often Postfix attempts redelivery of deferred messages.
Each time a message is deferred, the queue manager increases the amount of time it
waits to attempt delivery of that message again. The calculated time is never less than
minimal_backoff_time.

Example: minimal_backoff_time = 1000s

mydomain
Possible values: domain Default: (system dependent)

System’s domain name.

Example: mydomain = example.com

mynetworks
Possible values: net addresses Default: (system dependent)

List of IP or network addresses that are allowed to relay messages through your mail server.
Either mynetworks or mynetworks_style can be used to designate hosts permitted to relay.
mynetworks has precedence over mynetworks_style.

Example: mynetworks = 192.168.15.32/26

myorigin
Possible values: domain Default: $myhostname

Domain portion to append to message email addresses that contain localparts only.

Example: myorigin = $myhostname

newaliases_path
Possible values: pathname Default: (system dependent)

Full path to the Sendmail-compatibility newaliases command. newaliases is used to rebuild
alias databases.

Example: newaliases_path = /usr/bin/newaliases

notify_classes
Possible values: explicit list Default: resource,software

List of recognized error classes that cause a notification to be sent. Notification email
addresses are configured in parameters named according to the class, class_notice_recipient.

Example: notify_classes = resource, software

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 209

parent_domain_matches_subdomains
Possible values: yes/no Default: (see example)

List of lookup map types where lookups should match the domain itself plus all of its
subdomains.

Example: parent_domain_matches_subdomains = debug_peer_list, fast_flush_domains,
mynetworks, permit_mx_backup_networks, qmqpd_authorized_clients,
relay_domains, smtpd_access_maps

pickup_service_name
Possible values: service Default: pickup

Service the master daemon uses to retrieve locally injected messages. You normally do not
need to change this parameter.

Example: pickup_service_name = pickup

process_id_directory
Possible values: directory Default: pid

Directory for lock files used by the master daemon. The specified path is relative to the
Postfix spool directory.

Example: process_id_directory = pid

proxy_interfaces
Possible values: IP addresses Default: (null)

When a Postfix server is running on an internal network behind a proxy or NAT device,
and it serves as the backup MX host for a domain, it’s possible to get mail delivery loops
when the primary MX host is down. The proxy_interfaces specifies a list of network inter-
face addresses that receive mail via a proxy device. Postfix avoids mail loops with listed
interfaces.

Example: proxy_interfaces = 192.168.15.23

qmgr_clog_warn_time
Possible values: time unit Default: 300s

Minimum time between warnings that a particular destination is clogging up the active
queue. A value of 0 disables the warnings.

Example: qmgr_clog_warn_time = 300s

qmgr_message_active_limit
Possible values: count Default: 20000

Limit on the number of messages allowed in the active queue.

Example: qmgr_message_active_limit = 20000

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

210 | Appendix A: Configuration Parameters

qmgr_message_recipient_minimum
Possible values: count Default: 10

Minimum number of recipients stored in memory for each message.

Example: qmgr_message_recipient_minimum = 10

qmqpd_error_delay
Possible values: time unit Default: 1s

The QMQP service provides a centralized mail queue for a cluster of mail hosts. The
qmqpd_error_delay specifies the length of time the QMQP server should pause before
sending a negative reply to a client. The delay is meant to slow down misbehaving clients.

Example: qmqpd_error_delay = 1s

queue_directory
Possible values: directory Default: /var/spool/postfix

Directory for the Postfix queue.

Example: queue_directory = /var/spool/postfix

queue_run_delay
Possible values: time unit Default: 1000s

Amount of time between queue scans to check for deferred messages that are due for rede-
livery attempt.

Example: queue_run_delay = 1000s

rbl_reply_maps
Possible values: lookup tables Default: (null)

List of lookup tables used to map RBL domain names to responses when rejecting
messages because of either reject_rbl or reject_rhsbl. If an RBL domain is not listed, the
default_rbl_reply provides the response.

Example: rbl_reply_maps = hash:/etc/postfix/rbl_reply

recipient_canonical_maps
Possible values: lookup tables Default: (null)

List of lookup tables used to map recipient email addresses to their desired rewritten
form. Operates the same as canonical_maps but only for recipient addresses.
recipient_canonical_maps has precedence over canonical_maps.

Example: recipient_canonical_maps = hash:/etc/postfix/canonical

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 211

reject_code
Possible values: reply code Default: 554

SMTP response code to send when a request is rejected because of a client restriction.

Example: reject_code = 554

relay_domains_reject_code
Possible values: reply code Default: 554

SMTP response code to send when a request is rejected due to a disallowed relay attempt.

Example: relay_domains_reject_code = 554

relay_transport
Possible values: transport Default: relay

Transport to use for delivering relayed messages.

Example: relay_transport = relay

relocated_maps
Possible values: lookup tables Default: (null)

List of lookup tables that map moved addresses or domains to their new locations.

Example: relocated_maps = hash:/etc/postfix/relocated

resolve_dequoted_address
Possible values: yes/no Default: yes

Specifies whether or not Postfix resolves addresses whose localparts contain user-specified
routing. Set to yes to have Postfix quote localparts containing special symbols such as the
@ character for strict adherence to RFC 822.

Example: resolve_dequoted_address = yes

sample_directory
Possible values: directory Default: /etc/postfix

Directory for sample Postfix configuration files. The sample files give examples and docu-
ment Postfix configuration parameters.

Example: sample_directory = /etc/postfix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

212 | Appendix A: Configuration Parameters

sendmail_path
Possible values: pathname Default: (system dependent)

Full path to the Sendmail-compatibility sendmail command. sendmail is used primarily for
sending messages from a command line or from within scripts.

Example: sendmail_path = /usr/sbin/sendmail

setgid_group
Possible values: group Default: postdrop

Group ID used by Postfix for mail submission and queue management. Whatever group
you use should be dedicated for Postfix use only.

Example: setgid_group = postdrop

showq_service_name
Possible values: service Default: showq

Service used for reporting the Postfix mail queue status. You normally do not need to
change this parameter.

Example: showq_service_name = showq

smtp_bind_address
Possible values: IP address Default: (null)

IP address of the interface the SMTP client should bind to when making connections to
mail servers. Setting this parameter is necessary only on multihomed systems where you
explicitly must use just one of the interfaces.

Example: smtp_bind_address = 192.168.15.23

smtp_data_done_timeout
Possible values: time unit Default: 600s

Limit on the amount of time the SMTP client waits for a response from the server after
sending the SMTP . (a single dot) indicating the end of the message contents.

Example: smtp_data_done_timeout = 600s

smtp_data_xfer_timeout
Possible values: time unit Default: 180s

Limit on the amount of time the SMTP client waits while sending the message contents. If
the connection stalls for more than the specified value, the SMTP client terminates the
connection.

Example: smtp_data_xfer_timeout = 180s

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 213

smtp_destination_recipient_limit
Possible values: count Default: (see example)

Limit on the number of recipients per message delivery going out via the SMTP client.

Example: smtp_destination_recipient_limit =
 $default_destination_recipient_limit

smtp_helo_timeout
Possible values: time unit Default: 300s

Limit on the amount of time the SMTP client waits for a response from the server after
sending the SMTP HELO command.

Example: smtp_helo_timeout = 300s

smtp_mail_timeout
Possible values: time unit Default: 300s

Limit on the amount of time the SMTP client waits for a response from the server after
sending the SMTP MAIL FROM command.

Example: smtp_mail_timeout = 300s

smtp_pix_workaround_delay_time
Possible values: time unit Default: 10s

Certain older Cisco PIX firewalls contain a bug that causes them to interfere with SMTP
delivery when the final period and CR/LF indicating the end of message content arrive in
separate packets. Postfix can automatically detect the problem and adjust for it by waiting
before sending the final period and CR/LF to give the socket send buffer a chance to empty
out. The smtp_pix_workaround_delay_time parameter specifies how long Postfix waits for
the socket send buffer to empty.

Example: smtp_pix_workaround_delay_time = 10s

smtp_quit_timeout
Possible values: time unit Default: 300s

Limit on the amount of time the SMTP client waits for a response from the server after
sending the SMTP QUIT command.

Example: smtp_quit_timeout = 300s

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

214 | Appendix A: Configuration Parameters

smtp_rcpt_timeout
Possible values: time unit Default: 300s

Limit on the amount of time the SMTP client waits for a response from the server after
sending the SMTP RCPT TO command.

Example: smtp_rcpt_timeout = 300s

smtp_skip_5xx_greeting
Possible values: yes/no Default: yes

When an SMTP server responds with 5xx reply code, Postfix can either bounce the
message or move on to any additional mail exchangers for the destination domain to see if
they are able to accept the message. The parameter smtp_skip_5xx_greeting specifies
whether or not Postfix should react to the reply code or move on. A value of no causes
Postfix to try additional mail exchangers.

Example: smtp_skip_5xx_greeting = yes

smtpd_banner
Possible values: template Default: (see example)

Text that follows the 220 status code in the SMTP greeting banner. If you change this
parameter, be sure to include $myhostname at the start of the text, according to RFC
requirements.

Example: smtpd_banner = $myhostname ESMTP $mail_name

smtpd_data_restrictions
Possible values: UBE restrictions Default: (null)

List of UBE restrictions to apply when a client sends the SMTP DATA command.

Example: smtpd_data_restrictions = reject_unauth_pipelining

smtpd_error_sleep_time
Possible values: time unit Default: 1s

Length of time Postfix waits initially when a client causes an error. After the number of
errors exceeds the value in smtpd_soft_error_limit, Postfix increases the delay by one
second for every error.

Example: smtpd_error_sleep_time = 1s

smtpd_expansion_filter
Possible values: characters Default: (see example)

List of characters that are allowed in macro expansion by the SMTP server.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 215

Example: smtpd_expansion_filter = \t\40!"#$%&'()*+,-./0123456789:;<=>?@ \
 ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~

smtpd_helo_required
Possible values: yes/no Default: no

Specifies whether or not Postfix requires a client to start the SMTP conversation with the
HELO/EHLO command.

Example: smtpd_helo_required = no

smtpd_history_flush_threshold
Possible values: count Default: 100

Limit on the number of lines in the SMTP server command history.

Example: smtpd_history_flush_threshold = 100

smtpd_noop_commands
Possible values: explicit list Default: (null)

List of SMTP commands that Postfix should accept but take no action on. Postfix always
replies to these noop commands with a status of “250 Ok.”

Example: smtpd_noop_commands = vrfy, expn

smtpd_recipient_limit
Possible values: count Default: 1000

Limit on the number of recipients allowed in RCPT TO commands for each message. Postfix
rejects RCPT TO commands once the limit is reached.

Example: smtpd_recipient_limit = 1000

smtpd_restriction_classes
Possible values: list Default: (null)

List of administrator-defined restriction class names. Each defined class can be assigned to
UBE parameters.

Example: smtpd_restriction_classes = myrestriction_a, myrestriction_b

smtpd_soft_error_limit
Possible values: count Default: 10

Number of errors after which Postfix should increase delays to one second for every error.

Example: smtpd_soft_error_limit = 10

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

216 | Appendix A: Configuration Parameters

soft_bounce
Possible values: yes/no Default: no

Specifies whether or not mail that would normally be bounced should be queued for
redelivery attempts. Also converts any permanent rejection codes to temporary error
codes. This parameter is useful for testing out configuration changes to make sure that
no mail is permanently rejected.

Example: soft_bounce = no

strict_7bit_headers
Possible values: yes/no Default: no

Specifies whether or not Postfix should accept only 7-bit text in message headers as
required by the RFC. By default, if mail arrives with 8-bit text in the message headers it is
rejected.

Example: strict_7bit_headers = no

strict_8bitmime_body
Possible values: yes/no Default: no

Specifies whether or not Postfix should reject messages that contain 8-bit text that is not
properly MIME-encoded.

Example: strict_8bitmime_body = no

strict_rfc821_envelopes
Possible values: yes/no Default: no

Specifies whether or not Postfix requires envelope addresses to be within angle brackets
(<>) and without extraneous information as required by the RFC.

Example: strict_rfc821_envelopes = no

swap_bangpath
Possible values: yes/no Default: yes

UUCP uses the bang character (!) for routing email messages. The swap_bangpath parameter
specifies whether or not Postfix rewrites the bang as an at sign (@) for Internet email routing.

Example: swap_bangpath = yes

syslog_name
Possible values: string Default: postfix

Name to use with the process name in syslog records.

Example: syslog_name = postfix

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Parameter Reference | 217

transport_retry_time
Possible values: time unit Default: 60s

Time to wait before attempting to use a previously unavailable delivery transport.

Example: transport_retry_time = 60s

undisclosed_recipients_header
Possible values: string Default: (see example)

Header line to insert when no recipients are specified in any of the To: headers (e.g., To:,
Resent-To:, Cc:).

Example: undisclosed_recipients_header = To: undisclosed-recipients:;

unknown_client_reject_code
Possible values: reply code Default: 450

SMTP response code to send when a request is rejected due to the reject_unknown_client
restriction.

Example: unknown_client_reject_code = 450

unknown_local_recipient_reject_code
Possible values: reply code Default: 550

SMTP response code to send when a request is rejected because it is addressed to a
nonexistent local user.

Example: unknown_local_recipient_reject_code = 550

unknown_virtual_alias_reject_code
Possible values: reply code Default: 550

SMTP response code to send when a request is rejected because it is addressed to a
nonexistent user at one of your virtual alias domains.

Example: unknown_virtual_alias_reject_code = 550

verp_delimiter_filter
Possible values: characters Default: -=+

VERP is a technique used with mailing lists to handle bounced messages. It combines the
list owner address and original recipient address with a special delimiter character. The
verp_delimiter_filter parameter specifies which characters Postfix accepts as VERP
delimiter characters.

Example: verp_delimiter_filter = -=+

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

218 | Appendix A: Configuration Parameters

virtual_alias_maps
Possible values: lookup tables Default: (null)

List of lookup tables used to map virtual aliases to their destination email addresses.

Example: virtual_alias_maps = hash:/etc/postfix/virtual_alias

virtual_mailbox_base
Possible values: directory Default: (null)

Base directory for virtual mailbox files. All mailbox files are found relative to the base
directory.

Example: virtual_mailbox_base = /usr/local/virtual_mail

virtual_mailbox_limit
Possible values: bytes Default: 51200000

Limit on the size of virtual mailbox files. For maildir-style mailboxes, it limits only indi-
vidual file sizes, not the overall mailbox. The value here must not be smaller than
message_size_limit.

Example: virtual_mailbox_limit = 51200000

virtual_mailbox_maps
Possible values: lookup tables Default: (null)

List of lookup tables used to map virtual mailbox addresses to their mailbox files. Mailbox
file paths are relative to virtual_mailbox_base.

Example: virtual_mailbox_maps = hash:/etc/postfix/virtual_mailbox

virtual_transport
Possible values: transport Default: virtual

Default transport to use for delivering messages to virtual mailbox addresses.

Example: virtual_transport = virtual

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

219

Appendix B APPENDIX B

Postfix Commands

Postfix command-line tools are listed below. Each one is fully documented in a
manpage that comes with the Postfix distribution. This appendix is meant to give
you an idea of what each command is used for. You should refer to the manpages for
complete information about each of the commands:

postalias
Creates or queries alias databases.

postcat
Prints the contents of queue files, allowing administrators to display the text of a
message in the queue.

postconf
Displays or changes Postfix parameters. Can display one parameter at a time, or
the entire list of parameters.

postdrop
Injects a message into the maildrop directory for delivery by Postfix.

postfix
Starts and stops the Postfix system. Can also be used for other Postfix main-
tenance, such as checking the configuration and flushing the queue.

postkick
Sends a request to a particular Postfix service. Meant to provide a way for shell
scripts to communicate with Postfix services.

postlock
Locks a specified file for exclusive access. Provides a means for shell scripts to
use Postfix-compatible locking.

postlog
Logs specified information to the system-logging facility. Provides a means for
shell scripts to log information easily in a style similar to Postfix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

220 | Appendix B: Postfix Commands

postmap
Creates or queries lookup maps. Much of the Postfix configuration information
is kept in lookup tables that are created by the postmap command.

postqueue
Provides user-level access to the Postfix queue. Changes to the queue requiring
super-user privileges are managed by the postsuper command.

postsuper
Provides super-user access to the Postfix queue. Allows an administrator to
delete messages, place them on hold and release them from hold, and repair the
queue structure, if necessary.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

221

Appendix C APPENDIX C

Compiling and Installing Postfix

The general steps to build Postfix from the source files are to obtain the software
bundle, uncompress it, compile it, and install it. The tools you need are common on
nearly all distributions of Unix: gzip, tar, make, and a C compiler. Postfix generally
expects the GNU gcc compiler, but you can also build it with your platform’s native
compiler, as long as it supports ANSI C.

Obtaining Postfix
The official Postfix web site (http://www.postfix.org/) has a download link that dis-
plays a list of mirrors from which you can get the software. You should select the
mirror that is closest to you. Get the package you want by selecting the “Source
code” link under either the Official or Experimental release (see Chapter 1). The
examples here assume that you have downloaded a file called postfix-2.0.10.tar.gz. If
the file you download is different, change the filename accordingly in the commands
in the examples.

Postfix Compiling Primer
Before we move on to the specifics of building Postfix, let’s take a look at some of the
basics when compiling C code.

The options for a particular build are usually contained within a description file nor-
mally called Makefile. The make utility uses the Makefile to determine prerequisites,
dependencies, and options to use when building a package. Using this information,
make calls a compiler to create object files, and then a linker (usually called ld) to link
them together into executables.

Since the Postfix distribution creates its own Makefile, you don’t have to worry about
editing that (and you shouldn’t edit it, since any changes you make would likely get
overwritten later). Options that Postfix needs in its Makefile are defined in environ-
ment variables such as CCARGS. The INSTALL file that comes with the Postfix distri-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

222 | Appendix C: Compiling and Installing Postfix

bution discusses all of the available options. We’ll look at some of the more common
ones here.

The following environment variables are available to set compile-time options. You
should use quotes around the values to retain spaces or other shell metacharacters:

AUXLIBS
Tells the linker where to look for additional libraries that are not in the standard
locations. For example, if you build support for an add-on package, you may
have to indicate where the libraries are for that package.

CC
Specifies a particular compiler to use. If you want to use a compiler other than
the one Postfix selects, set this variable to your compiler. Postfix normally uses
gcc except on platforms where the native compiler is known to work better. You
can check the makedefs file to see which compiler Postfix uses by default on your
system.

CCARGS
Provides additional arguments to the compiler. If your compiler allows special
options or your supporting files are not located in default directories, indicate
those options with this variable.

DEBUG
The DEBUG parameter specifies debugging levels for the compiler to use when
building the Postfix binaries. Turning on debugging produces extra information
that a debugger can use. You can also turn off debugging features completely to
build Postfix for a production system.

OPT
The OPT parameter specifies optimization levels for the compiler to use when
building Postfix binaries. Additional optimization may increase performance but
at the cost of longer compilation and more memory. You can probably accept
the defaults that Postfix selects for your platform.

Compiler Options
Compiler options are set in the CCARGS variable. C source code files require header
files that define certain functions and variables. The standard location for header files
is the /usr/include directory. If your header files are located somewhere else, you have
to tell the compiler where to look for them. The -I compiler option is used to spec-
ify additional directories where the compiler might find header files. If you are link-
ing with libraries from external packages, the header files might be located where the
package is installed rather than in the standard location. A common convention for
external packages is to install header files in /usr/local/include. If you want to tell the
compiler to look in that directory as well as the standard location when building
Postfix, specify the options and directory with CCARGS:

CCARGS='-I/usr/local/include/'

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Postfix Compiling Primer | 223

Use additional -I options for each additional directory the compiler should search.

Postfix uses conditional compilation during its build, depending on which libraries
or other resources are available on your system. It defines certain macros based on
what it discovers about your system or based on options you have selected. The -D
option provides a way to define macros at the time you compile Postfix. Add-on
packages for Postfix require that you define a particular macro to tell Postfix to
include it when building. For example, if you want to include support for MySQL,
you define the HAS_MYSQL macro:

CCARGS='-DHAS_MYSQL'

Linker Options
Linker options are set in the AUXLIBS variable. After Postfix has compiled the object
files, it links them together with required libraries into executable files. The standard
location for system libraries is /usr/lib. To tell the linker to search additional directo-
ries for libraries, use the -L option:

AUXLIBS='-L/usr/local/lib'

You must also tell the linker which specific libraries to link in. The -l option is used
to name specific libraries. The library files must be in a standard location or a direc-
tory indicated with the -L option. Library archive files are named starting with lib,
followed by their name, followed by the extension, which is normally .a for static
libraries and .so or .sl for shared objects or shared libraries. When you use the -l
option, you leave off the initial lib and the extension of the library file. To link with
the MySQL client library for example, where the library file is called libmysqlclient.a,
the -l option is specified as follows:

AUXLIBS='-L/usr/local/lib -lmysqlclient'

Most linkers choose runtime or dynamic libraries over the static versions. Runtime
libraries are linked when a program is running rather than during compilation. At
compile time, the linker adds information so the program can find the libraries when
it is executed. If you always install all of your dynamic libraries in a standard loca-
tion such as /usr/lib, your system won’t have any trouble finding the libraries at
runtime. However, some external packages install libraries in nonstandard directo-
ries such that they cannot be found at runtime. Different systems use different con-
ventions for locating dynamic libraries using fixed path information and
environment variables. Be sure to configure your system to be able to find your
dynamic libraries or make sure that the libraries are installed in your system’s stan-
dard directories. Another option is to provide the actual path to specific libraries
when you build your programs.

The linker uses an argument to include directories in a runtime search path for
dynamic libraries. The argument differs depending on your linker and platform. The
GNU linker (Linux, FreeBSD) uses -rpath, as does IRIX. Solaris, on the other hand

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

224 | Appendix C: Compiling and Installing Postfix

uses -R, and HP-UX uses +b. Consult the manpage for your linker, ld(1), to see
which argument you should use to set the runtime library search path.

Using the SSL library as an example, if your libssl.so file is located in /usr/local/lib and
you are building Postfix on FreeBSD or another system that uses rpath, define
AUXLIBS as follows:

AUXLIBS='-L/usr/local/lib -rpath/usr/local/lib -lssl'

When linking Postfix with external libraries, if you have multiple versions of the
libraries installed, it is very important to make sure that you link Postfix with the ver-
sion you need. Also, make sure that the library version you link to corresponds to the
correct version of the header files you include. Version mismatch problems are often
the source of compiler errors. Sometimes the compiler does not complain, in which
case your build may succeed, but you’re likely to find unusual errors from Postfix at
runtime that can be tricky to track down.

Building Postfix
The source file that you download is in a compressed, tar archive and must be
uncompressed using the gzip command. In the same directory as the downloaded
bundle, type the following:

$ gzip -d postfix-2.0.10.tar.gz

This uncompresses the file and produces a tar file without the .gz extension. Next,
untar the file:

$ tar -xf postfix-2.0.10.tar

This creates a directory called postfix-2.0.10 below the current directory. Set that
directory as your current directory for the rest of the compilation:

$ cd postfix-2.0.10

gcc and Unrecognized Linker Options
Some versions of gcc do not understand all of the linker options you might use, and
generate errors when compiling. The -rpath option is a common one. The compiler
generates an error like gcc: unrecognized option '-rpath'. Since this option is really
meant for the linker and gcc doesn’t really have to recognize it, there is an easy
workaround. The gcc compiler uses the -Wl, argument to indicate that certain options
should be passed to the linker and otherwise ignored. In this case, when you specify
the -rpath option, do it with -Wl:

AUXLIBS='-L/usr/local/lib -Wl,-rpath,/usr/local/lib -lssl'

See the gcc(1) manpage for more information.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Building Postfix | 225

If you accept all of the default parameters for building Postfix, compiling is as simple
as executing make in the top-level directory of the distribution:

$ make

Executing make creates a Makefile for your particular platform, which is in turn used
to compile Postfix for your system. If you don’t need any changes to the default
build, you can skip ahead to the “Installation” section.

Customizing Your Build
The file makedefs contains platform-specific information that Postfix uses when con-
figuring the package for your system. If you are curious, you can look at the file to
see which parameters Postfix uses for your platform. It identifies your environment
and creates the macros and definitions that are used in the Makefile for building
Postfix on your system. The resultant Makefile is invoked by the make command
which in turn calls your compiler and linker to build the Postfix system. When you
type make as above, all of this happens automatically, so you don’t normally need to
worry about this file.

If you want to change any of the parameters for your environment, you can execute
the build in two steps. The command make makefiles creates a new Makefile based
on parameters that you specify on the command line. To set specific parameters,
simply define variables on the command line. For example, you can use a different
compiler from the default that Postfix chooses for your environment. The following
example works on an HP-UX system to be sure that make finds the correct compiler:

$ make makefiles CC="/opt/ansic/bin/cc -Ae"

You would, of course, specify the path to your own compiler plus any necessary
options. If you need to specify an additional directory for header files on your sys-
tem, define CCARGS to include your directory:

$ make makefiles CCARGS="-I /usr/local/include/"

And, of course, you can combine options:

$ make makefiles CC="/opt/ansic/bin/cc -Ae" CCARGS="-I /usr/local/include"

Modifying Postfix Defaults
Postfix provides a lot of flexibility through its configuration files. Nearly all of Post-
fix’s runtime parameters, including the various directories it uses, can be set in its
configuration file except, of course, the location of the configuration file itself. You
can change the location by defining DEF_CONFIG_DIR within the CCARGS variable:

$ make makefiles CCARGS='-DDEF_CONFIG_DIR=\"/usr/local/etc/postfix\"'

The single and double quotation marks and backslashes are important since the
value for DEF_CONFIG_DIR should itself be quoted. After compilation, Postfix looks for

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

226 | Appendix C: Compiling and Installing Postfix

its main.cf configuration file in the directory /usr/local/etc/postfix instead of the
default directory, /etc/postfix.

You can use combinations of all the examples above to configure the environment
you need. If your command line starts to get complicated, you might want to create a
simple shell script to execute it for you. See “Wrapping Things Up” later in this
appendix.

Once you have used make makefiles with your specific options to create your
Makefile, execute make to build Postfix:

$ make

Installation
After you have successfully compiled Postfix, you are ready to install it. You will
have to be the root user in order to perform the installation steps.

You need to create a dedicated account that will own the Postfix queue and most of
its processes. The account should not permit logins and does not need a shell or a
home directory. Use your normal administrative tools to create an account. You can
set the password to * and its home directory and shell to invalid paths (something
like /bin/false or /dev/null). By convention the username should be postfix. The entry
in /etc/passwd should resemble the following:

postfix:*:1001:1001:postfix:/no/where:/bin/false

You must also create a dedicated group that is not used by any user account, includ-
ing the postfix account you just created. By convention the group name is postdrop.
On most systems you create groups by editing the /etc/group. Add a line like the
following:

postdrop:*:1007:

Remember that Postfix is a replacement for Sendmail, and in order to maintain com-
patibility it installs its own sendmail binary in place of your existing one. You may
want to rename the existing one to save it from being overwritten. Depending on
your platform your existing sendmail is commonly in /usr/sbin/sendmail or /usr/lib/
sendmail. You should be able to determine the exact location of your sendmail by
executing:

whereis sendmail

This may list a number of files. You are looking for the binary that has no extension.
Once you have found it, rename it to move it out of the way:

mv /usr/sbin/sendmail /usr/sbin/sendmail.orig

You will also want to rename two other files that will be replaced by Postfix: mailq
and newaliases. These are commonly found in the /usr/bin directory, but you can use

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Installation | 227

the whereis command to locate them if necessary. These commands might be sym-
bolic links on your systems:

mv /usr/bin/mailq /usr/bin/mailq.orig
mv /usr/bin/newaliases /usr/bin/newaliases.orig

Now you are ready to run the installation script.

Make sure you are still the root user and still in the Postfix distribution directory.
Execute the installation script:

make install

After checking that everything is built, the installation script asks you a few ques-
tions about setting up Postfix on your system:

install_root: [/]

The install_root directory is the root directory of your system. The only time you
would want to change this is if you are creating an installable package. Package
builders often want to keep all of the files together in a separate subdirectory in order
to bundle them up when creating an installable distribution:

tempdir: [/home/kdent/postfix-2.0.10]

The tempdir directory is a place where the installation script can write temporary
files. It defaults to your current directory and cleans up after itself. If for some rea-
son you want the installation script to use another directory, specify it here:

config_directory: [/etc/postfix]
daemon_directory: [/usr/libexec/postfix]
command_directory: [/usr/sbin]
queue_directory: [/var/spool/postfix]
sendmail_path: [/usr/lib/sendmail]
newaliases_path: [/usr/bin/newaliases]
mailq_path: [/usr/bin/mailq]

You should probably accept the defaults for the questions that involve the location of
the various Postfix files. Just be sure that the default values presented by the installa-
tion script match the directories you found with the whereis command for your origi-
nal copies of sendmail, newaliases, and mailq. If they don’t, you should type in the
correct path when the installation script prompts you for it.

mail_owner: [postfix]

The mail_owner defaults to postfix, and assuming that you followed the instructions
earlier, you can accept that value. If you created an account with a different user-
name, enter that here.

setgid_group: [postdrop]

The setgid property defaults to postdrop, and assuming you followed the instruc-
tions earlier, you can accept that value. If you created a group with a different name,
enter that here.

manpage_directory: [/usr/local/man]

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

228 | Appendix C: Compiling and Installing Postfix

For installation of the Postfix man pages, you can accept the default or type in a
more appropriate place on your system.

sample_directory: [/etc/postfix]

The sample configuration files contain explanations for Postfix parameters and
should be included in your installation. If you prefer not to have them in your config-
uration directory, you can specify a different location here.

readme_directory: [no]

The Postfix distribution includes several README files with additional information
about particular features and add-on packages. These are less critical for the regular
maintenance of your Postfix server than the sample configuration files, but if you
would like to include them on your system, specify a path where they should be
installed. If you don’t install them, they are still available in the distribution directory.

The installation script then installs all of the necessary files.

Upgrading
If Postfix is already installed on your system, you can upgrade it when you have a
new compilation or version to install. It’s usually best to stop Postfix before perform-
ing the upgrade. The upgrade process is not interactive but requires that the main.cf
file exist on your system already:

postfix stop
make upgrade
postfix start

Postfix checks for changed files and replaces them with newer versions from your
new compilation. Be sure to check the log file after restarting Postfix.

Compiling Add-on Packages
This section walks through building Postfix with various add-on packages that are
mentioned in the book. Before recompiling Postfix with any additional packages, it is
important to first clean up from any previous builds. Execute the following:

$ make tidy

Now you’ll be starting with a clean source tree for your new builds. Each of the
examples below takes you through creating a new Makefile. Once you’ve accom-
plished that, simply type:

$ make

to rebuild Postfix. If your new build is successful, you can upgrade your currently
installed Postfix:

make upgrade

If you hadn’t previously installed Postfix, use make install instead.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Compiling Add-on Packages | 229

Cyrus SASL
See Chapter 12 for information on Cyrus SASL and Postfix. You can download the
source for the Cyrus SASL libraries from the Carnegie Mellon web site at http://
asg.web.cmu.edu/sasl/sasl-library.html. Note that this book assumes that you are
working with SASL Version 2.x libraries. Follow the instructions for building the
Cyrus SASL2 libraries. There is also a SASL_README file that comes with the
Postfix distribution.

One issue when compiling Cyrus SASL that affects Postfix is whether or not to
include support for certain Microsoft clients that authenticate using a nonstandard
mechanism. The standard plain-text authentication mechanism is identified as PLAIN,
but these clients use LOGIN. If you need to support such clients, be sure that the
libraries are built with the workaround enabled using the --enable-login option
when you run configure.

When you install the libraries, be sure to note their location. This example assumes
that they are installed in /usr/local/lib and that the header files are located below /usr/
local/include. If you are using different locations, adjust the examples accordingly.

To build Postfix with SASL support, you must define the USE_SASL_AUTH macro and
specify the directories for the libraries and header files. You must also link against
the libsasl2.so library file. Run make tidy if necessary. Build your Makefile with the
following options:

$ make makefiles CCARGS='-DUSE_SASL_AUTH -I/usr/local/include/sasl' \
AUXLIBS='-L/usr/local/lib -lsasl2'

Remember that if you must provide the path to your libraries to the runtime linker,
include the correct runtime search path argument:

$ make makefiles CCARGS='-DUSE_SASL_AUTH -I/usr/local/include/sasl' \
AUXLIBS='-L/usr/local/lib -lsasl2 -rpath /usr/local/lib'

If your linker uses an argument other than rpath, be sure to specify the correct one.

TLS
See Chapter 13 for information on the TLS patches and Postfix. You can find the
web site for the TLS patches from the “Add-on Software” page of the Postfix web
site. Since this add-on modifies the Postfix source, make sure you get the correct
download for your version of Postfix. For this example, assume the downloaded file
is called pfixtls-0.8.13-2.0.10-0.9.7b.tar.gz. If the file you download is different,
adjust the examples accordingly.

This add-on depends on the OpenSSL library, which you must install first if it’s not
already on your system. Check the documentation that comes with the TLS distribu-
tion to make sure you have the correct version of OpenSSL. For this example,
assume that your OpenSSL libraries are installed in /usr/local/ssl/lib and the header

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

230 | Appendix C: Compiling and Installing Postfix

files are in /usr/local/ssl/include. If your installation differs, adjust the example
accordingly.

The TLS modifications to the Postfix source are all contained in the file pfixtls.diff,
and you use the patch command to apply the differences to your Postfix source. You
should uncompress and untar the TLS patch in a subdirectory that is at the same
level as your Postfix directory such that if your current directory is the one above the
Postfix source, you can see both the Postfix directory and the TLS patch directory:

$ pwd
/home/kdent
$ ls -ld pfixtls-0.8.13-2.0.10-0.9.7b postfix-2.0.10
drwxr-xr-x 5 kdent kdent 512 May 14 2002 pfixtls-0.8.13-2.0.10-0.9.7b
drwxr-xr-x 15 kdent kdent 1024 May 31 17:31 postfix-2.0.10

From that directory apply the patch as follows:

$ patch -p0 < pfixtls-0.8.13-2.0.10-0.9.7b/pfixtls.diff

patch reports the changes as it makes them until it finishes and displays “done” on
your terminal.

Go back to the Postfix distribution directory to build Postfix with TLS support. You
must define the HAS_SSL macro and specify the directories for the SSL libraries and
header files. You must also link against the libssl.so (or libssl.a) and libcrypto.so (or
libcrypto.a) library files. Run make tidy if necessary. Build your Makefile with the fol-
lowing options:

$ make makefiles CCARGS='-DHAS_SSL -I/usr/local/ssl/include' \
AUXLIBS='-L/usr/local/ssl/lib -lcrypto -lssl'

Remember that if you must provide the path to your libraries to the runtime linker,
include the correct runtime search path argument:

$ make makefiles CCARGS='-DHAS_SSL -I/usr/local/ssl/include' \
AUXLIBS='-L/usr/local/ssl/lib -lcrypto -lssl -rpath /usr/local/ssl/lib'

If your linker uses an argument other than rpath, be sure to specify the correct one.

MySQL
See Chapter 15 for information on MySQL and Postfix. This add-on depends on the
MySQL client library and the zlib compression library, which you must install first if
they’re not already on your system. This example assumes that your MySQL library
is installed in /usr/local/lib/mysql with its header files in /usr/local/include/mysql and
that the zlib library is in /usr/lib. If your installation differs, adjust the example
accordingly. There is a MYSQL_README file that comes with the Postfix distribu-
tion with information about building Postfix with support for MySQL.

To build Postfix with MySQL support, you must define the HAS_MYSQL macro and
specify the directories for the MySQL library and header files. You must link against
the libmysqlclient.so and the libz.so library files. You must also link against the libm.so

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Common Problems | 231

math library file, which is standard on Unix systems. Run make tidy if necessary.
Build your Makefile with the following options:

$ make makefiles 'CCARGS=-DHAS_MYSQL -I/usr/local/include/mysql' \
'AUXLIBS=-L/usr/local/lib/mysql -lmysqlclient -lz -lm'

Remember that if you must provide the path to your libraries to the runtime linker,
include the correct runtime search path argument:

$ make makefiles 'CCARGS=-DHAS_MYSQL -I/usr/local/include/mysql' \
'AUXLIBS=-L/usr/local/lib/mysql -lmysqlclient -lz -lm \

 -rpath /usr/local/lib/mysql'

If your linker uses an argument other than rpath, be sure to specify the correct one.

LDAP
See Chapter 15 for information on LDAP and Postfix. This add-on depends on
LDAP libraries, which you must install first if they’re not already on your system.
There are commercial libraries available as well as an open source package from
http://www.openldap.org/. This example assumes that you have LDAP libraries
installed in /usr/local/lib/ and LDAP header files in /usr/local/include. If your instal-
lation differs, adjust the example accordingly. There is an LDAP_README file
that comes with the Postfix distribution with information about building Postfix
with support for LDAP.

To build Postfix with LDAP support, you must define the HAS_LDAP macro and spec-
ify the directories for the LDAP libraries and header files. You must link against the
libldap.so library file and also the liblber.so library file, which defines encoding rou-
tines for the LDAP protocol. Run make tidy if necessary. Build your Makefile with
the following options:

$ make makefiles CCARGS='-I/usr/local/include -DHAS_LDAP' \
AUXLIBS='-L/usr/local/lib -lldap -L/usr/local/lib -llber'

Remember that if you must provide the path to your libraries to the runtime linker,
include the correct runtime search path argument:

$ make makefiles CCARGS='-I/usr/local/include -DHAS_LDAP' \
AUXLIBS='-L/usr/local/lib -lldap -L/usr/local/lib -llber \

 -rpath /usr/local/lib'

If your linker uses an argument other than rpath, be sure to specify the correct one.

Common Problems
If you run into problems, check the various README files for information about
your build. Frequently, they contain information about problems you might run
into. Certainly, if there is a README file specific to your platform, be sure to read it.
Some possible problems are mentioned below. Exact messages vary depending on
your platform and compiler, so the following are general errors similar to what you
might see when building Postfix.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

232 | Appendix C: Compiling and Installing Postfix

Compile Time
No such file or directory

Make sure that the path to your compiler is correct. If you specified a compiler
by setting CC when building your Makefile (for example, make makefiles CC="/
path"), double-check the path you typed. If the path to your compiler came from
the Postfix makedefs file, you might need to override it with:

$ make makefiles CC="/path/to/your/compiler"

Another possibility is to have Postfix call your compiler without a path, assum-
ing its directory is in your environment path:

$ make makefiles CC="cc"

Could not open source file
Make sure that the path to your include files is correct. The include files are nor-
mally stored in /usr/include. If your system uses a different path for some reason,
you will have to specify it with the -I option set in CCARGS:

$ make makefiles CCARGS="-I/path/to/include"

If you already specified a path with -I double-check your typing.

Unresolved (or undefined) symbol
Make sure that the library paths you specified with the -L option are correct and
that you have specified the libraries themselves correctly with the -l option.

Warnings from header files
If you see errors associated with a header file like mail_conf.h, you may not be
using an ANSI C compiler. Nearly all platforms ship with a compiler that is used
to reconfigure the kernel, but they do not all include an ANSI C compiler that
you can use for development. You may have to contact your vendor to get an
ANSI C compiler if you want to build Postfix. Also, the GNU gcc compiler
works on nearly all platforms and is available as open source software. If you are
using the compiler for HP-UX, you must use the -Ae flag to compile in ANSI
mode. Include it in your CCARGS variable:

$ make makefiles CCARGS="-Ae"

Don’t know how to
You have probably lost your Makefile or never had one. You can easily create
your Makefile by executing the command:

$ make -f Makefile.init makefiles

After that completes, try your build again.

Runtime
Error in loading shared libraries

Make sure that you specified either the -rpath or -R option when you built Post-
fix and that the paths specified are correct. Be sure that you are using the correct
option for your platform. You may have to check the manpage for ld(1) to be
sure.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Wrapping Things Up | 233

Wrapping Things Up
You can mix and match any of the options or add on libraries described in this
appendix to build Postfix for your environment. If your command line for building
the Postfix Makefile is getting a little complicated, you should probably create a sim-
ple shell script that invokes the options and additional libraries you need. Creating a
build script has the added advantage of documenting the options you used when you
last built Postfix. Feel free to include plenty of comments to yourself to explain the
reasons you are including an option or not, and how you came to that decision. The
following is an example of a shell script you might use, although you will certainly
need to customize it for your own environment. This example includes all of the add-
on libraries we’ve discussed. You should exclude the ones you don’t need:

#
Simple script to create a Makefile to build Postfix.
#

#
Remember to start by cleaning up or uncomment this line
to have this script do it every time.
#
#make tidy

#
Specify all of our options and supporting libraries
#
make makefiles \
 CCARGS='-DUSE_SASL_AUTH -DHAS_SSL -DHAS_MYSQL -DHAS_LDAP \
 -I/usr/local/include/sasl -I/usr/local/ssl/include \
 -I/usr/local/include/mysql -I/usr/local/include' \
 AUXLIBS='-L/usr/local/lib -L/usr/local/ssl/lib \
 -L/usr/local/lib/mysql -L/usr/local/lib \
 -lsasl2 -lcrypto -lssl -lmysqlclient -lz -lm -lldap -llber \
 -rpath /usr/local/lib/mysql -rpath /usr/local/lib \
 -rpath /usr/local/ssl/lib'

To build Postfix, type:

$ sh build.sh
$ make

The first command creates your Makefile with the options you need. The second exe-
cutes the build.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

234

Appendix DAPPENDIX D

Frequently Asked Questions

I can’t seem to receive messages. What does this error mean: “<test@example.com>:
mail for example.com loops back to myself”?

Postfix reports this error when a DNS reply points to your mail server, but Postfix has not
been configured to accept mail for the domain. Postfix accepts mail for domains listed in
mydestination, relay_domains, virtual_mailbox_domains, virtual_alias_domains, and
domains that resolve to IP addresses listed in inet_interfaces and proxy_interfaces.
Your domain must be listed in one of these parameters.

When I make changes to configuration files or lookup tables, do I have to reload Postfix?
It depends on the type of file you are changing. Changes in files that Postfix
reads into memory at startup require a reload. Examples of such files are main.cf,
master.cf, and any lookup table using regular expressions. DB or DBM files are
not read into memory and don’t require reloading Postfix when they are
changed.

Is there some kind of “include” directive for main.cf?
No. Most administrators with complex configurations create a Makefile that will
cat the necessary files together. If you have other regular administrative tasks,
add them to your Makefile too. Your Makefile should have an entry that looks
something like this:

main.cf: file1 file2 file3
 cat file1 file2 file3 > main.cf.new
 mv main.cf.new main.cf

Then type make main.cf to rebuild your configuration file.

How can I get confirmation of mail deliveries?
This is not currently available in Postfix.

How can I add or append a disclaimer (or other text) to the bottom of every email that
gets sent from my mail server?

By design this is not implemented in Postfix directly. It’s not the job of an MTA,
and it’s not as simple a problem as it seems because of MIME and digital signa-
tures. MIME messages have a structure that can be very complex. Digital signa-

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Frequently Asked Questions | 235

tures attest to the fact that a signed message has not been modified. Adding a
footer to the bottom of a message breaks both of these. Some people add short
text to the headers of email messages, but the text is not likely to be seen by
most users. The real solution is to configure your clients to add whatever text is
required.

Having said that, it is possible to configure a content filter that appends the text
for you. Follow the directions for configuring Postfix to work with a content fil-
ter. Your filter should be MIME-aware, and you should be aware that digital sig-
natures will no longer work.

How can I save a copy of every message?
Specify an address in the always_bcc parameter. It will receive copies of all
messages.

How can I enable quota or size limits on users’ mailboxes?
This is not really a function of Postfix, although you may achieve what you’re
looking for with the mailbox_size_limit. Be aware that if you use maildir-style
mailboxes, this parameter limits only the size of individual mail files and not the
size of the entire mailbox. Mailbox quotas are best enforced by the mail store
itself, which might be done through normal operating system accounting or your
POP/IMAP server configuration.

When Postfix sends a bounce message, it tells the sender, “For further assistance, please
send mail to <postmaster>”. But I want it to include my domain name in the address,
e.g., <postmaster@example.com>. How can I do that?

The idea behind this message is that users should contact their own postmasters
for assistance, since the local postmaster is quite possibly the one who has to
deal with the problem. If you definitely want to make the change, you have to
modify the source code.

I have aliases where only the first address in the list receives messages. The others can
receive mail fine when sent to them directly, but when they’re part of an alias, their
messages don’t arrive.

If you are using an external program for delivery, it might not handle more
than one address at a time. Such is the case with maildrop, for example. To
make sure that Postfix passes messages for delivery one at a time, set the
transport_destination_recipient_limit parameter in main.cf to 1. transport is
the name of the transport method making the deliveries. If you are using
maildrop, the parameter looks like the following:

maildrop_destination_recipient_limit = 1

I have a few interfaces on my system. How can I get Postfix to bind to only one of
them?

Specify the IP address of the interface you want Postfix to use in the
inet_interfaces parameter.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

236 | Appendix D: Frequently Asked Questions

With Sendmail, I used to get a warning notice when a message couldn’t be delivered for
four hours or so. Can I get that with Postfix?

This is controlled by the delay_warning_time parameter. By default it’s set to 0
for “never”.

I’m trying to test alias lists to see which addresses are expanded from particular lists.
With other mail servers, I used the EXPN command to get a full recipient list, but it
doesn’t seem to work with Postfix.

Postfix does not support EXPN. Because of Postfix’s architecture and concern
for security, the unprivileged SMTP server doesn’t know anything about local
aliases. It’s the privileged local delivery agent that actually expands aliases at the
point of delivery. If you use a mailing-list manager, it most likely has a com-
mand to tell you who is on the list, or you may have to check the aliases file on
the mail server system.

What’s the difference between mailbox_transport and mailbox_command?
The mailbox_transport parameter is set to a service from master.cf, while
mailbox_command refers to an actual command on the mail server filesystem.
There are a few parameters that can affect mailbox delivery. The parame-
ters in order of preference are mailbox_transport, mailbox_command_maps,
mailbox_command, and home_mailbox.

All of my internal systems relay through my mail gateway. Is there a way to remove or
hide the hostnames and IP addresses of my internal systems from the messages headers
before they go out?

Add header checks that match the header lines showing your internal systems
and specify the IGNORE action for them.

How can I tell Postfix to forward all messages that are sent to nonexistent mailboxes to
a particular user?

You can specify an address in the luser_relay parameter and disable
local_recipient_maps:

luser_relay = info
local_recipient_maps =

Be careful if you do this. With the prevalence of spam, the address you specify is
liable to catch a large amount of junk mail.

According to my configuration, Postfix should be replying with a permanent error code
(554), but it keeps sending a temporary one (454). Why is it doing that?

You probably have soft_bounce turned on.

I have a whole bunch of mail queued up that I know I don’t need. Is there any way to
delete all of the queued messages?

postsuper -d ALL

Note that the word ALL must be all capital letters, and that executing this command
deletes all of the mail in your queue.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Frequently Asked Questions | 237

Where does Postfix log its information?
Postfix logs messages to your system’s syslogd daemon. Check your system doc-
umentation to find the actual log file.

Postfix seems to be ignoring the MX record and trying to deliver directly to the A record
system. Is this normal?

It’s normal if you have:
disable_dns_lookups = yes

specified in main.cf. You might also have a transport map specified in brackets,
in which case Postfix delivers directly to the system:

example.com smtp:[mail.example.com]

I get a lot of spam with a blank envelope sender address. How can I block these?
You don’t want to block messages based on the fact that they have a null return
path. Accepting null envelope addresses is required by the standards. The tech-
nique is used to prevent looping of error notifications. You’ll have to identify the
spam by some other means.

I’m using header_checks and body_checks to block spam, but some legitimate email is
blocked by my checks. Is there any way to whitelist some mail so that the header and
body checks are not applied?

No. Header and body checks are applied to every message and should be used
for simple checks that can easily be applied to all mail. If you need anything
more sophisticated, you should set up a content filter that has the smarts you
need.

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

239

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
* (asterisk), for messages in active queue, 62
\ (backslash), continuing long command lines

in Unix, 12
% (command prompt), 11
$ (dollar sign)

command prompt, 11
in configuration variables, 32

! (exclamation point)
marking messages in hold queue, 62
preventing rewriting of domain names, 54

? (question mark), ending wakeup time
with, 50

" (quotation marks)
in alias definitions, 39
lookup tables and, 33
parameter values and, 31

(root prompt), 11
/ (slash)

in file pointers, 32
in regular expression keys, 37

| (vertical bar), commands as alias targets, 39

Numbers
2bounce_notice_recipient parameter, 196

A
A records, 69

domains without, 75
for mail exchangers, 72
MTA routing of email with, 71
for MX hosts, 75

access maps
client checking with, 136, 136–139

actions to take after checking, 137
example configuration, 138

regular expression tables for, 138
access_map_reject_code parameter, 196
account names, excluding from

masquerading, 54
active attacks, 158
active queue, 22, 25, 58, 59

messages marked with asterisk (*), 62
additional_conditions parameter, 186-188
address classes, 22

masquerading all, 54
addresses, email

address completion, turning off, 53
as alias targets, 39
blocking spam from (see spam)
client-based rules, restrictions to

check, 137
correction by cleanup daemon, 25
creating text file for mailing lists, 114
deleting queued messages by, 63
format in message header (RFC 2822), 14
handling by trivial-rewrite daemon, 20
identifying spam from, 128
legitimate return address appropriated by

spammers, 126
rewriting, 52–55

with canonical_maps lookup table, 33
canonical addresses, 52
masquerading hostnames, 54
relocated users, 55
unknown users, 55

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

240 | Index

addresses, email (continued)
sender and recipient, sent during SMTP

transaction, 132
administration, 44–47

logging, 44
pseudo account for processes, 11
queue management (see queue manager)
root privileges and, 11
running Postfix at system startup, 46–47

writing an initialization script, 46
starting, stopping, and reloading

Postfix, 45
administrator, email (postmaster), 13
agents, email

listing of, 13
(see also MDAs; MTAs; MUAs)

alias files, 38
building alias database files, 38
delivery to command or file specified

in, 82
format of, 39
important aliases, 40
locating aliases, 38
restrictions on targets, 40

alias_database parameter, 39, 115
adding Mailman alias file to, 123
adding Majordomo alias file to, 119

aliases, 14
checking before local part of email

address, 81
checking by local delivery agent, 23
hostname, canonical name for

(CNAME), 69
hosts in MX records, 72
mailing list

creating, 113
owner, 113
sending message to test list, 116

Mailman, creating file for storing, 123
Majordomo, creating file for, 119
system database of, correct format, 29
virtual, 93

catchall addresses with, 94
lookup table for, 100

virtual alias
addresses, 23
lookup file, 91

alias_maps parameter, 38, 113, 196
adding Mailman alias file to, 123
additional alias files for mailing list, 115
configuring for MySQL/Postfix, 188
editing to add Majordomo alias file, 119
LDAP, setting for, 190

allow_mail_to_commands, 40
allow_mail_to_files parameter, 40, 197
allow_percent_hack parameter, 197
alternate_config_directories parameter, 197
ANONYMOUS authentication

mechanism, 153
anonymous logins, 159
append_at_myorigin parameter, 197

turning off address completion, 53
append_dot_mydomain parameter

turning off address completion, 53
approve command (Majordomo), 117
architecture, Postfix, 19–27

components, 19
how messages enter Postfix system, 20–22

email forwarding, 22
email notifications, 22
local email submission, 20
network email, 21

mail delivery, 22–25
local, 23
other delivery agents, 24
other messages, 24
relay messages, 23
virtual alias messages, 23
virtual mailbox messages, 23

queue manager, 22
tracing a message through, 25–27

arrival time, messages in queue, 62
ASCII characters in email message body, 15
assignment with a comment (parameter

example), 31
attached message headers, checking for, 144
attachments with file extensions, rejecting all

messages with, 146
attacks

active, 158
dictionary (see dictionary attacks)
distributed denial-of-service, use of

hijacked systems for, 128
indicated by increasingly frequent errors

from a client, 51
malicious program sending garbage

commands, 52
AUTH SMTP command, 160
authentication

certificate, 44, 164
(see also TLS)

client-side certificates, 170–172
framework, 152

choosing, 154
specifying for SASL use with

Postfix, 155–156

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 241

identity, 160
IMAP server, Cyrus SASL library, 87
mechanism, 152

choosing, 152
SASL (see SASL authentication)
SMTP, 162

relay control with, 43
authoritative domain nameservers, 69
authorization identity, 160
authorized_verp_clients parameter, 197
automatic reply program, 96–98
auto-responders, configuring virtual, 99–101
auto_transition feature of Cyrus SASL, 156
auxiliary property plug-ins, 156

B
backscatter, 126
backup MX, 103–106
base64 encoding of credentials, 160
Berkeley DB, Cyrus IMAP and, 87
berkeley_db_read_buffer_size

parameter, 197
biff, 198
bin and daemon (pseudo accounts), 11
binary format, aliases file, 29
BIND (DNS server application), 70
blacklisted sites

DNS-based Blacklists (DNSBL), 128
realtime blacklist checking

restrictions, 136
realtime blacklists

client restrictions based on, 141
body of email messages, 14

checks during client-based spam
detection, 132

content filtering with body checks, 174
body_checks parameter, 37, 144

pattern comparison in, 146
body_checks_size_limit parameter, 146, 198
bounce daemon, 22
bounced messages, 13

mailing list, 116
spam sent to non-existent users, 126

bounce_service_name parameter, 198
bounce_size_limit parameter, 59
broken_sasl_auth_clients parameter, 157
btree (lookup table database), 34
buffer overflow attacks, 7
building Postfix, 8, 224

customizing your build, 225
modifying defaults, 225
(see also compiling Postfix)

C
C code, compiling, 221
CA (see Certificate Authority)
canonical addresses, 52
canonical domain, 89
canonical names for hostname aliases, 69
canonical_maps parameter, 33, 35, 52, 198

assigning lookup table to, 91
Carnegie Mellon University, Cyrus IMAP, 85
catchall addresses, 94

virtual alias, 94
virtual mailbox, 94

Certificate Authority (CA), 165
client certificates signed by, 170
digital signature of public keys, 166
public certificates identifying, 169

certificate signing request (CSR), 167
certificates, 164

authentication by, 44
CA, installing, 168
TLS, 165

becoming a CA, 165
client-side, 170–172
public-key cryptography, use of, 166

check_client_access restriction, 137
check_helo_access restriction, 137
check_recipient_access restriction, 137
check_sender_access restriction, 137
chroot, 7, 56

executing correct script for your
system, 56

in master.cf file, 49
Postfix running in, DNS file and, 76

classes
address, 22
error, 61

class_notice_recipient parameter, 61
class_transport parameter, 24
cleanup daemon, 20, 21

error messages, checking, 22
fixing email addresses, 25
queue manager, notifying of incoming

mail, 22
client certificates

common name, 172
creating, 170
fingerprints for, 171

client errors, increasingly frequent, 51
client_access file, 139
client-based spam detection, 128

configuring rules for, 130
defining rules with restriction classes, 131

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

242 | Index

client-based spam detection (continued)
DNS-based blacklists, 128
rules, restrictions assigned to, 131

access maps, 136–139
DNS restrictions, 140
generic restrictions, 142
how restrictions work, 134
listing restrictions, 133
other restrictions, 139
realtime blacklists, 141
restriction definitions, 136
SMTP conversations, 131
SMTP rules and restrictions, 133
strict syntax restrictions, 140
testing new restrictions, 135

spammer tactics to circumvent, 129
clientcerts file, 171
client/server authentication, agreement on

mechanism, 153
client-side certificate authentication (see

certificates)
CNAME records, 69, 72
command prompts, Unix, 11
command used to execute a service

(master.cf), 50
command_directory parameter, 198
command-line tools

for managing certificates, 165
queues, 62–67

deleting messages, 63
displaying messages, 65
flushing messages, 67
holding messages, 64
listing messages, 62
requeuing messages, 65

resolving domain names, 73
commands

as alias targets, 39
content filtering, 175, 175–177

configuration, 176
delivery to, 95–102

automatic reply program, 96–98
configuring virtual

auto-responder, 99–101
configuring virtual mailing list

manager, 101
executing your own with pipe

daemon, 50
Postfix, 219

default directory for, 28
specified in alias files, deliveries to, 82
Unix, documentation in man pages, 12

command_time_limit parameter, 198
comments (in main.cf file), 31
common name

client certificate, 172
public key, 166

compile time errors, 232
compiling Postfix

add-on packages, 228
Cyrus SASL, 229
LDAP, 231
MySQL, 230
TLS, 229

common problems, 231
compiler options, 222
linker options, 223
primer, 221
script to create a Makefile, 233
(see also building Postfix)

completion of email addresses, turning
off, 53

components, Postfix, 19
concurrent delivery attempts, 60
configuration, 28–57

chroot environment, 56
default, as Unix mail server, 28
default directories, 28
MTA identity, 41

mydestination parameter, 42
myhostname and mydomain

parameters, 41
myorigin parameter, 41

parameters, 195–218
Postfix anti-spam example, 149
Postfix/TLS, 168

summary of, 169
receiving limits, 51
relay control, 42

dynamic IP solutions, 43
restricting relay access, 42
SMTP authentication, 43

relay (mail delivery agents) control
certificate authentication, 44

rewriting addresses, 52–55
canonical addresses, 52
masquerading hostnames, 54
relocated users, 55
unknown users, 55

spam checks for Postfix, 130–150
categories of spam detection, 130
client-detection rules, 131–143
content checking, 144–147
customized restriction classes, 147
strict syntax parameters, 143

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 243

starting Postfix, first time, 29
aliases file, system, 29
hostname, 29

(see also configuration files)
configuration files, 30–33

alias files, 38
alias database, building, 38
format of, 39
important aliases, 40
locating aliases, 38
restrictions on targets, 40

BIND, for a domain, 70
Cyrus, 87
default directory for, 28
/etc/postfix directory, 30
lookup tables, 33–37

database formats, 34
format of, 33
other formats, 37
parameters that take lists, 36
regular expressions, using, 36
search order, 35

main.cf file, 31
configuration variables, 32
line continuation, 32
multiple values for parameters, 32

majordomo.cf, 118
master daemon (main.cf and

master.cf), 19
master.cf (see master.cf file)
mysql-local.cf, 187
sample, 31, 57

content filtering, 174–182
address rewriting and, 181
command-based, 175–177

configuration of, 176
configuring external filters, 175
daemon-based, 177–181

configuration of, 178–180
example of, 180

filters configured to accept mail before
MTA, 182

mail delivery agents (MDAs), 174
mail transfer agents (MTAs), 174
mail user agents (MUAs), 174
MTA and MUA filters, combining, 175
Postfix body and header checks, 174
running multiple filters by chaining

them, 181
content filters, 174

evading with HTML code in message
body, 147

redirecting message to after client access
map check, 138

separate, sending messge through after
content checking, 146

separate, using to detect spam, 144
content-based spam detection, 129

comparing patterns, 146
configuring Postfix for, 131
content checking actions, 145
content checking configuration, 144
content checking parameters, 144
labeling spam with content filters, 130
spammer tactics to circumvent, 129

content_filter parameter, 177, 199
turning on daemon-based filtering, 180

continuation of lines
email message header fields, 15
in lookup table files, 33
main.cf file, 32

corrupt queue, 22, 58, 61
credentials, 160

authentication mechanism for
exchanging, 152

encoded exchange of, 153
encryption with TLS, 164
OTP authentication, for SMTP

clients, 153
cryptography, public-key, 166

client certificates, 170
generating server certificates, 167

CSR (certificate signing request), 167
cur directory, 80
Cyrus IMAP

Postfix and, 85
example, 87

server, 85
Cyrus SASL libraries, 87, 151, 154

SASL and SASLv2 development
tracks, 154

saslauthd authentication server, 155

D
daemon (pseudo account), 11
daemon_directory parameter, 50
daemons, 19

chrooted, making all resources available
to, 56

content filtering, 175, 177–181
configuration, 178–180
example of, 180

default Postfix directory for, 28

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

244 | Index

daemons (continued)
master daemon, control by, 30
options for, 50

daemon_timeout parameter, 199
DATA command (SMTP), 17, 132
database formats in lookup tables, 34
databases, external, 183–193

LDAP, 190–193
configuration, 190
example Postfix/LDAP

configuration, 191
MySQL, 184

configuration, 184
MySQL/Postfix configuration

example, 186
days (d), 50
dbm (lookup table database), 34
dbname parameter, 185
debugging

domain name resolution, 73
enabling information for, 50
tracing service failures in chroot, 57

debug_peer_list parameter, 199
default_database_type parameter, 34, 39
default_destination_concurrency_limit

parameter, 60, 199
default_destination_recipient_limit

parameter, 61
default_extra_recipient_limit parameter, 199
default_privs parameter, 40
default_process_limit parameter, 50, 60, 200
default_recipient_limit parameter, 200
default_verp_delimiters parameter, 200
defer daemon, 22
deferred messages

deferring delivery, 24, 109
deferring mail relay, 108
reason for inability to deliver, 62
time in queue, specifying, 104

deferred queue, 22, 58, 59
redelivery attempts, scheduling, 59

defer_service_name parameter, 200
defer_transports parameter, 109
definitions

of aliases, 39
parameter, in main.cf, 31

delayed messages, information about, 22
delay_notice_recipient parameter, 200
delays

introducing with each client error, 51
scheduling delivery attempts for deferred

mail, 59

deleting queued messages, 63
Delivered-To: header, 117
deliver_lock_attempts parameter, 200
delivery agents for email (see MDAs)
delivery attempts for deferred mail,

scheduling, 59
delivery of mail, 19, 22–25

disallowing/allowing to commands and
files, 40

handling by queue manager, 60
corrupt messages, 61
error notifications, 61

local messages, 23
message header To: address and, 14
with multiple recipients, 6
other delivery agents, 24

LMTP, 24
pipe daemon, 25

other messages, 24
Postfix, 5
queueing messages and retrying

periodically, 6
relay messages, 23
spam, labeling as, 130
virtual alias messages, 23
virtual mailbox messages, 23

delivery transports, 77
denial-of-service attacks (DOS), 8

distributed, 128
dictionary attacks

luser_relay parameter, using, 55
nodictionary password mechanism, 158

dig tool, 73
DIGEST-MD5 mechanism, 153
digital signatures, 166
directories

default, for Postfix, 28
Postfix configuration files, 30

disable_dns_lookups parameter, 201
disable_mime_output_conversion

parameter, 201
disable_vrfy_command parameter, 201
discarding messages, 138

after content checking, 145
displaying queued messages, 65
distinguished name, 170
distributed denial-of-service attacks, 128
DNS (Domain Name System), 68–76

blacklists based on, 128, 141
checking rules restrictions, client-based

spam detection, 136, 140
configuration of virtual domains, 90

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 245

definition of, 68
email routing, 69–72

BIND configuration file, 70
MX records, 70

host lookup problems, 75
MX records

backup MX, 103–106
overview of, 68

hierarchical hostnames, 68
resource records for domains, 69

receiving mail and, 74
sending mail and, 72

Postfix configuration options, 73
reverse PTR records, 74

DNSBL (DNS-based Blacklists), 128, 141
documentation

with Postfix distribution, 57
Postfix, online, web sites, and mailing

list, xi
Unix (man pages), 12

Domain Name System (see DNS)
domain names

in email addresses, 14
fully-qualified

rejection of client requests based
on, 140

strict syntax restrictions for
clients, 140

hostname masquerading and, 54
for local delivery, 23
myorigin parameter, appending to email

addresses with, 52
for relay domains, 24
for virtual aliasing, 23
for virtual mailboxes, 23

domains
authoritative nameservers for, 69
fast_flush_domains parameter, 105
hosting multiple, 89–102

delivery to commands, 95–102
mailbox file ownership, 92
separate domains with system

accounts, 90
separate domains with virtual

accounts, 91–95
separate message store, 95
shared domains with system

accounts, 90
mail exchangers for (MX records), 69
matching in lookup tables, 36
parameters dealing with, 41
relay, 23

resource records database, 69
specifying domain for SASL user

account, 156
types and parameters, listing of, 74

DOS (denial-of-service) attacks, 8, 128
dotlock (locking type), 79
double_bounce_sender parameter, 201
DRAC (Dynamic Relay Authorization

Control), 43
dynamic IP addresses, SMTP client

authentication and, 43

E
ease-of-use (Postfix), 2
echo command -n switch, 160
egrep command, finding Postfix logging

messages with, 45
EHLO command (SMTP), 18

requiring with strict syntax
parameter, 143

email
DNS and, 68–76
Internet, 3–5, 12–18

agents, summary listing of, 13
DNS and routing email, 69–72
envelope addresses and message

headers, 14
format of addresses, 14
history of, 1
limiting incoming, 51
MDA (message delivery agent), 4
message and address format in header

(RFC 2822), 14
message format, 14
MTAs (mail transfer agents), 3
MUAs (mail user agents), 3
POP/IMAP, mailbox access and, 5
Postfix security, 7
postmaster, 13
protocols, 4
rejected or bounced messages, 13
RFCs (Request for Comments), 12
SMTP, 15–18
software packages for, 4

empty_address_recipient parameter, 201
encode_sasl_plain (Perl script), 161
encoding

credentials in base64, 160
exchange of credentials, 153
HTML in messages to avoid spam

detection, 129
encryption, TLS, 164

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

246 | Index

end of email message, indicating in
SMTP, 18

enhanced SMTP (ESMTP), 18
envelope addresses, 14

address masquerading and, 54
faking by spammers, 43
strict formatting rules in SMTP RFC, 144

errors
codes for, SMTP, 73
compile time, 232
email, notifications for, 61
host

lookup problems, 75
mailing list, sending notifications to list

owner, 113, 116
messages about deferred or bounced

email, 22
run time, 232

error_service_name parameter, 202
ESMTP (enhanced SMTP), 18
/etc/passwd file, 10
ETRN command, 105
expand_owner_alias parameter, 114
expansion of incomplete email addresses,

turning off, 53
Experimental Release package, 9
export_environment parameter, 202
external databases, 183–193

using for lookup values, 37

F
fallback_relay parameter, 202
fallback_transport parameter, 86
false-positive spam identification, 127
fast flushing, 67, 105
fast_flush_domains parameter, 67, 105, 202
fast_flush_refresh_time parameter, 202
Fax deliveries, configuring Postfix for, 111
fcnt (locking type), 79
fifo, 48
file locking, 79
file permissions, Majordomo and, 120
filenames as alias targets, 39
files (specified in alias files), deliveries to, 82
filter_destination_recipient_limit

parameter, 177
fingerprints for client certificates, 171
flexibility (of Postfix), 2
flock (locking type), 79
flush daemon, 105

wakeup for, 50

flushing queued messages, 67
fast flushing, 105

fork_attempts parameter, 202
.forward files, 81
forward_expansion_filter parameter, 203
forwarding email, 22

aliases and, 40
by local delivery agent, 23
local delivery, 81
virtual alias messages, 23
(see also alias files; aliases)

forward_path parameter, 81
frequently asked questions, 234–237
fully qualified domain names, strict syntax

restrictions based on, 140
fully qualified hostname, 41

rejection of client requests based on, 140
system, 29

G
gateways

inbound mail, 109
outbound mail, 111
UUCP, setting up, 111

generic restriction rules, 136, 142
gethostname function, 41
groups

deliveries to virtual mailbox files, 93
group id (GID) for process invoking

Mailman, 121
postdrop group, 29

H
hard links, chroot and, 57
hash type (lookup table database), 34
hash_queue_depth parameter, 203
header checks

comparing with patterns in lookup
table, 146

content filtering with, 174
header_address_token_limit parameter, 203
header_checks parameter, 37, 144

regular expressions in file, 145
headers

address masquerading, 54
checking in client-based spam

detection, 132
Delivered-To:, 117
fields in, 14
insertion by trivial-rewrite daemon, 20

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 247

mailing list messages, example of, 113
To: address in, 14

header_size_limit parameter, 203
HELO command (SMTP), 17

requiring with strict syntax
parameter, 143

restriction list, tracing, 142
smtpd_helo restrictions, 132

hiding names of internal hosts, 54
hierarchical naming of hosts, 68
hold queue, 58

messages marked with exclamation point
(!), 62

moving messages into, 64
moving messages out of, 65
placing message in after client access map

check, 138
placing messages in after content

checking, 145
home_mailbox parameter, 82, 203
host, 106

destination, for inet transports, 106
inet socket, 48
lookup problems, 75
tool, 73
(see also DNS; hostnames)

hosting multiple domains, 89–102
delivery to commands, 95–102

automatic reply program, 96–98
configuring virtual

auto-responder, 99–101
configuring virtual mailing list

manager, 101
mailbox file ownership, 92
Postfix configuration for, deciding on, 89
separate domains with system

accounts, 90
separate domains with virtual

accounts, 91–95
catachall addresses, 94
mailbox file ownership, 92
virtual aliases, 93

separate message store, 95
shared domains with system accounts, 90

hostname command (Unix), 29
hostnames

client restrictions based on strict syntax, 140
client-based rules, restrictions for

checking, 137
connected SMTP client, sent with

HELO, 132
for mail exchangers, in MX records, 72
identifying spam from, 128

mapping to IP addresses to, 69
masquerading, 54
spam blocking based on during SMTP

conversation, 131
system

fully qualified, 29
parameters dealing with, 41

hosts parameter, seting for MySQL, 185
hours (h), 50
HTML code in message body to avoid spam

detection, 129, 146
https, 166

I
ignore_mx_lookup_error parameter, 204
ignoring headers or lines from body of

message, 145
IMAP, 4

Cyrus IMAP, 85
POP versus, 83
(see also POP/IMAP)

inbound mail gateway, 109
include files

as alias targets, 39
security risks with, 40

incoming email, limiting, 51
incoming queue, 22, 58
incomplete email addresses, turning off

address completion for, 53
inet sockets

LMTP server using, 86
inet target, 48
in_flow_delay parameter, 204
info file, 119
initial_destination_concurrency

parameter, 60, 204
initialization scripts for Unix systems, 46
input/output

standard input and standard output,
Unix, 11

installing daemon-based content filter, 179
installing Postfix, 28, 226–228

upgrading, 228
Internet

email and, 3–5
major email protocols, 4
MDA (message delivery agent), 4
MTAs (mail transfer agents), 3
MUAs (mail user agents), 3
software packages for email, 4

Internet Engineering Task Force (IETF)
web site, 13

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

248 | Index

Internet Mail Application Protocol (see
IMAP)

IP addresses
client-based rules, restrictions for

checking, 137
dynamic, SMTP authentication of

client, 43
for mail exchangers, in MX records, 72
identifying spam from, 128, 131
mapping hostnames to (see DNS)
PTR records associated with, 74
for remote users, 43
reverse lookup of hostname for, 69

ipc_idle parameter, 204

K
Kerberos authentication, 153
key agreement, 167
key/value pairs

in canonical maps lookup table, 33
in lookup tables, format of, 33

L
labeling spam and delivering with spam

tag, 130
LDAP, 37, 190–193

compiling, 231
configuration, 190
directory, 191
example Postfix/LDAP configuration, 191
Postfix support for, checking, 183

left hand side (or LHS) of email
addresses, 14

line continuation
in lookup table files, 33
in main.cf file, 32

line_length_limit parameter, 146, 204
link files, chroot and, 57
listing messages in queues, 62
lists, parameters that accept, 33

lookup tables and, 36
lmtp delivery agent, 27
LMTP (Local Mail Transfer Protocol), 24,

84–88
Postfix and Cyrus IMAP, 85
Postfix and Cyrus IMAP example, 87

lmtp_connect_timeout parameter, 204
lmtp_data_init_timeout parameter, 205
lmtp_lhlo_timeout parameter, 205
lmtp_quit_timeout parameter, 205
lmtp_tcp_port parameter, 205

local addresses, 22
LHS aliases, 39

local delivery
alias, 82
domain listings in mydestination

parameter, 80
.forward files, 81
Local Mail Transfer Protocol (see LMTP)
mailbox, 82
message store formats, 78–80

maildir, 79
mbox, 78
mbox versus maildir, 80

recipients, listing of, 81
local delivery agent, 23, 25, 27
local delivery transport, 77
local domains, 74

virtual mailing list, parallel version
of, 101

local email submission (to Postfix), 20
local part, email addresses, 14

my_origin, appended to supply
domain, 52

searching for in lookup tables, 35
local_destination_concurrency_limit

parameter, 61, 205
local_recipient_maps parameter, 81, 206

configuring for LDAP, 192
configuring for MySQL/Postfix, 187
preventing rejection of mail for unknown

users, 55
setting to query LDAP directory, 191

local_transport parameter
LMTP and Unix domain socket, using, 86
Postfix delivery of messages to Cyrus

IMAP, 86
locking files, 79
logging, 44

mail log file, 45
Postfix startup problems, 30
SMTP, 132
syslog daemon (syslogd), 45
verbose, turning on, 50

LOGIN authentication mechanism, 152
login names (Unix), 10
lookup tables, 33–37, 195

access maps, 136
aliases (see alias files)
assigning parameters to, 35
assigning to canonical_maps, 91
canonical addresses, mapping, 52
canonical_maps, 33

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 249

content checking, 144
regular expressions in, 144

database formats, 34
default directory for, 28
dynamic updates of user IP addresses, 43
format of, 33
other formats, 37
parameters that take lists, 36
regular expression, 36
relocated addresses or domains, 55
search order in, 35
sender addresses mapped to SASL

logins, 157
transport, 110
for virtual mailbox addresses, 23
virtual alias addresses, 23, 100

luser_relay parameter, 55, 206

M
mail

incoming, limiting, 51
relaying, 103–111

backup MX, 103–106
client authentication for, 151
inbound mail gateway, 109
outbound, 110
transport maps, 106–109
UUCP, fax and others, 111

(see also email, Internet)
mail delivery agents (see MDAs)
mail delivery loops

Majordomo moderator approval and, 117
preventing with myhostname values, 179

mail exchangers
A records for, 72
aliases and, 72
backup MX, 103–106

fast flushing, 105
relay recipients, 104

DNS MX records, 70
(see also MX records)

host preference values, 71
hostname instead of IP address in MX

record, 72
Postfix server as MX host, 75
preference values in MX records, 72

MAIL FROM command (SMTP), 17, 132
checking address supplied by client

with, 137
no valid DNS entry with, 136
reject_unknown_sender_domain rule

and, 141

mail log file, 45
mail servers, DNS and, 68
mail transfer agents (see MTAs)
mail user agents (see MUAs)
mailbox access (see message stores;

POP/IMAP)
mailbox delivery, 82
mailbox file ownership, 92
mailbox names, required (RFC 2142), 40
mailbox_command parameter, 206
mailbox_delivery_lock parameter, 206
mailbox_transport parameter, 206

Postfix, passing messages to Cyrus
IMAP, 86

maildir format, 79
configuring Postfix to use, 82
mbox versus, 80
virtual mailbox files, 92

maildrop directory, 20, 25
mailing list for virtual domain, configuring

manager for, 101
Mailing List Managers (see MLMs)
mailing lists, 112–124

additional alias files for, 115
creating simple, 115
MLMs, 117

Mailman, 121–124
Majordomo, 117–121

owners of, 113
separate list files, 114
simple, creating through alias facility, 113
testing by sending message to alias, 116

Mailman, 121–124
configure, running with GID for mailman

group, 121
creating a list, 122

aliases, storing in separate file, 123
initializing mailing list with

newlist, 123
group id (GID) of invoking process, 121
Python, requirement for, 121

mailman user account and group name, 121
mail_owner parameter, 49, 206
mailq command, 62
mail_spool_directory parameter, 82, 206
main.cf file, 30, 31

changes in, reloading Postfix for, 33
configuration for components, overriding

in master.cf, 51
configuration variables, 32
editing, 31
limits on incoming mail, configuring, 51

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

250 | Index

main.cf file (continued)
line continuation in, 32
multiple values for parameters, 32

pointer to file containing, 32
rules (Postfix UBE), default setting

for, 133
strict syntax parameters, 143

Majordomo, 117–121
aliases table, 101
creating a list, 118

aliases database, 119
aliases file, 119
info file message to new members, 119
obtaining and installing

Majordomo, 118
Perl, verifying for, 118
potential problems with file

permissions, 120
subscribing to the list, 120
testing installation, 119

majordomo.cf file, 118
malicious program sending garbage

commands, 52
man pages, 12

with Postfix distribution, 57
man-in-the-middle attacks, 158
manpage_directory parameter, 207
MANPATH variable, 57
map types, 34

alias files, 38
regular expression lookup tables, 37

masquerade_classes parameter, 54
masquerade_domains parameter, 54, 207

preserving domain names from
stripping, 54

setting to hide/show subdomains, 54
masquerade_exceptions parameter, 54
masquerading hostnames, 54
master daemon, 19, 30
master.cf file, 30, 47–51

chroot, 49
chrooting individual components, 56
command (to execute a service), 50
filtering of messages delivered by

smtpd, 177
maxproc, 50, 60
overriding configuration information in

main.cf, 51
private, 49
sample file, 48
service name, 48
transport, 106

transport type, 48, 60
unpriv, 49
wakeup, 50

matching patterns (see regular expressions)
max_idle parameter, 207
maximal_backoff_time parameter, 60, 207
maximal_queue_lifetime parameter, 60, 104
maxproc (master.cf), 50, 60
mbox format, 78, 82

virtual mailbox files, 92
MDAs (mail delivery agents), 4

content filtering by, 174
defined, 13
spam filtering, 130
specialized, using to set up per-user UBE

rules, 147
message ID, 62
message stores, 4

delivery to nonstandard with LMTP, 84
formats, 78–80

maildir, 79, 82
mbox, 78, 82
mbox versus maildir, 80
Postfix and POP/IMAP agreement

on, 84
message retrieval with POP and IMAP, 4
separate, hosting virtual domains

with, 95
shell access to (on Unix), 5

messages, email
content-based spam detection, 129
delivery by Postfix, 22–25

local, 23
other delivery agents, 24
other messages, 24
relay messages, 23
virtual alias messages, 23
virtual mailbox messages, 23

format for message and address in header
(RFC 2822), 14

format of, 14
how they enter Postfix system, 20–22

email forwarding, 22
email notifications, 22
local email submission, 20
network email, 21

inspecting content for prhrases common
to spam, 128

queueing by Postfix, 22
spam, actions Postfix can take with, 131,

134
tracing through Postfix, 25–27

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 251

message_size_limit parameter, 51, 207
MIME encoding, 15

converting strings to, 160
mime_header_checks parameter, 144, 207
minimal_backoff_time parameter, 60, 208
minutes (m), 50
MLMs (Mailing List Managers), 112, 117

Mailman, 121–124
configure, running with mailman

GID, 121
creating a list, 122
Python, requirement for, 121

Majordomo, 117–121
creating list, 118

mmencode command, 160
modular design, Postfix, 7
MTAs (mail transfer agents), 3

content filtering, 174
defined, 13
mail exchangers, specified in MX

records, 69
message headers and, 14
rejecting or bouncing messages, 13
routing email with DNS MX records, 69
SMTP protocol, use of, 5

MUAs (mail user agents), 3
content filtering by, 174
defined, 13
message headers and, 14
POP/IMAP and SMTP, 4
POP/IMAP servers, message retrieval

from, 5
SMTP protocol, use of, 5
spam filtering, 130

mutual_auth (password mechanism), 159
MX records, 69

backup MX, 103–106
DNS checking rules, client restrictions

based on, 141
domains without, 75
host preference values, 71
Postfix lookups of, 72
rules for, 72

mydestination parameter, 23, 42
destination domains handled by local

transport, 80
virtual domains, adding to, 90

mydomain parameter, 41, 208
myhostname parameter, 29, 41

daemon-based filters and, 178
mynetworks parameter, 42, 208

configuring for daemon-based filter, 180

outbound mail relay, 111
mynetworks_style parameter, 42
myorigin parameter, 41, 52, 208
MySQL, 37, 184

compiling, 230
configuration of, 184

MySQL parameters, 185
example of MySQL/Postfix

configuration, 186
Postfix support for, checking, 183

mysql-local.cf file, 187

N
named pipes (fifo transport type), 49
names

fifo transport type, 49
inet transport in master.cf, 48
unix transport type, 49

nameservers for domains, 69
namespaces (separate), for virtual

domains, 90
nested_header_checks parameter, 144
network email

entering Postfix system, 21
message delivery with Postfix, 5

network/netmask notation, 42
networks

deliveries between mail systems on
same, 24

IP addresses, lookup tables for lists of, 36
sockets (inet transportation type), 48

new directory (maildir), 80
newaliases command, 29, 38, 115, 119
newaliases_path parameter, 208
newlist command (Mailman), 123
NIS, 38
noactive (password mechanism), 158
noanonymous (password mechanism), 159
nobody account, 82
nodictionary (password mechanism), 158
non_fqdn_reject_code parameter, 140
noplaintext (password mechanims), 158
notifications of email errors, 22, 61
notify_classes parameter, 61, 208
nslookup tool, 73
nsswitch.conf file, 76

O
Official Release package, 9
One-Time Passwords (see OTP

authentication mechanism)

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

252 | Index

open relays, 42, 127
anonymous authentication mechanism

and, 153
DNS-based blacklists of, 128
preventing with Postfix UBE rules, 133

openssl command, 165
generating public/private key for

user, 170
generating public/private keys for your

server, 167
signing your own certificate, 170

OpenSSL libraries, 165
openssl x509 command, 171
operating systems, precompiled Postfix

packages for, 8
other client checks (restrictions), 136
OTP authentication mechanism, 153
outbound mail relay, 110
outgoing messages, controlling resources

for, 60
owner_request_special parameter, 114
owners of mailing lists, bounce notification

message to, 116

P
PAM, using as SASL authentication

framework, 155
parameters, 195–218

content-checking, 144
documentation in sample files, 57
for domain types, 74
LDAP, 190
main.cf and sample configuration files,

listing in, 31
MySQL, 185
SASL password authentication, 157
strict syntax, 143
system hostname and domain, 41
TLS within SMTP client, 172
TLS within SMTP server, 168

parent_domain_matches_subdomains
parameter, 36, 209

password parameter, setting for MySQL, 185
passwords

authentication framework, choosing, 154
authentication mechanism for,

specifying, 158
protecting with TLS, 151
SASL authentication for storing and

verifying, 152
SASL, using as authentication

framework, 156

Unix system passwords as SASL
framework, 155

pathnames, 195
paths, specifying with variable expansion, 81
pattern matching (see regular expressions)
pcre (Perl-compatible regular

expressions), 36
PEM format for certificates, 165
performance, Postfix and, 2
Perl

deleting queued messages by email
address, script for, 63

encode_sasl_plain.pl script, 161
Majordomo approve script, 118
Majordomo, requirement for, 117

Perl-compatible regular expressions
(pcre), 36

permit restriction, 134, 142
permit_auth_destination parameter, 139
permit_mynetworks parameter, 135, 139
permit_sasl_authenticated restriction, 157, 158
permit_tls_clientcerts, 172
persistent message storage, 4
PGP, 164
pickup daemon, 20, 25

wakeup for, 50
pickup_service_name parameter, 209
pipe daemon, 100

delivering messages through, 25
executing your own commands with, 50
pipe delivery agent, 27
variable expansion of recipients list, 176

pipelining, reject_unauth_pipelining
rule, 140

pipes, named (fifo transport), 49
PKCS12 format, client certificates, 170
PLAIN mechanism (authentication), 152, 160
plaintext passwords

noplaintext mechanism, 158
use with saslauthd daemon, 158

plug-ins, auxprop, 156
pointers to files, 32
POP, 4
pop-before-smtp, 43
POP/IMAP, 83

clients logging on before SMTP
authentication, 43

email software packages, 4
handing messages to in LMTP protocol, 24
local delivery and, 77

LMTP, 84–88
maildir message store format, 79

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 253

mbox message store format, 79
message store format, choice of, 80
nonstandard message stores, 84

mailbox access and, 5
passing mail for virtual domains to, 95
POP versus IMAP, 83
Postfix, cooperation with, 83
Postfix deliveries to virtual accounts

and, 89
separate user database, sharing, 154
virtual mailboxes, setting up, 92

Portable Operating System Interface
(POSIX), 36

ports
destination, for inet transport delivery, 107
inet socket, 48
well-known, for SMTP (port 25), 16

POSIX extended regular expressions (see
regexp)

Post Office Protocol (see POP; POP/IMAP)
postalias command, 38, 219
postcat command, 219

-q option (displaying queue contents), 65
shell script wrapper for, 66

postconf command, 29, 219
-h myhostname, 156
-l (locking) option, 79
-m (map) option, 34
-m option, checking for MySQL and

LDAP support, 183
postdrop command, 20, 219
postdrop group, 29
Postfix

compatibility with Sendmail, 2
online documentation, web sites, and

mailing list, xi
role in message delivery, 5
web site for information and source

code, 8
postfix command, 44, 219

starting, stopping, and reloading
Postfix, 45

postfix user, 29
postkick command, 219
postlock command, 219
postlog command, 219
postmap command, 34, 220

checking LDAP configuration with, 192
checking MySQL configuration file, 188
executing against clientcerts file, 171
executing against virtual alias lookup

table, 100
executing on virtual aliases file, 91

-q option, testing lookup tables, 37
testing canonical file with, 53
testing regular expressions with, 147

postmaster, 13
error notices sent to, 61

postqueue command, 58, 62, 220
-f (flush) option, 67, 108
-p option, listing all messages with, 62
-s (site) option, 67, 106

postsuper command, 58, 62, 220
-d ALL (deleting all queued messages), 63
-d (delete) option, 63
-h (hold) option, 64
-H option (moving message to normal

queue), 65
-r (requeue) option, 65

precompiled Postfix packages for operating
systems, 8

preference values for mail exchangers, 72
Postfix SMTP client, handling by, 74

printf command, 160
private column (master.cf), 49
privilege levels for processes, 7

unpriv (master.cf), 49
processes

limit to (maxproc, in master.cf), 50
limiting for available transports, 60
Postfix, security and, 7
pseudo account for, 11
shells and, 7
Unix, standard input/standard output, 11

process_id_directory parameter, 209
protocols for email, 4

IMAP, 4
POP, 4
POP/IMAP, mailbox access and, 5
SMTP, 4

email submission and, 5
proxy servers, abuse by spammers, 128
proxy_interfaces parameter, 209
pseudo-accounts

for daemon-based filter, 178
for filter program, 176
on Unix, 11

PTR records, 69
DNS checking rules, client restrictions

based on, 141
reverse mapping to a hostname, 74

public-key cryptography, 166
client certificates, 170
generating server certificates, 167

Python, Mailman requirement for, 122

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

254 | Index

Q
qmgr daemon (see queue management)
qmgr_clog_warn_time parameter, 209
qmgr_message_active_limit parameter, 209
qmgr_message_recipient_minimum

parameter, 210
qmqpd_error_delay parameter, 210
queue ID, 62

displaying queue contents by, 66
queue management, 58–67

qmgr daemon, how it works, 58–62
corrupt messages, 61
deferred mail, 59
error notifications, 61
message delivery, 60
queue scheduling, 59

tools for, 62–67
deleting messages, 63
displaying messages, 65
flushing messages, 67
holding messages, 64
listing messages, 62
requeuing messages, 65

queue manager, 20
network email, handling, 21
(see also queue management)

queue manager, Postfix, 22
queue scans

scheduled intervals for, 60
specifying time between, 46

queue_directory parameter, 58, 210
chroot location, specifying, 49
root directories for chrooted services, 56

queueing messages, 19
queue_minfree parameter, 58
queue_run_delay parameter, 46, 60, 210
queues

default Postfix directory for, 28
incoming, active, deferred, hold, and

corrupt, 58
(see also queue management; entries

under individual queue names)

R
rbl_reply_maps parameter, 210
RCPT TO command (SMTP), 17, 132

checking address client supplied with, 137
rejection of client after, 134

realtime blacklists, 128
client restrictions based on, 141
restrictions based on, 136

Received: header, 15
receiving limits, 51

errors from a client, 51
recipients for a single message, 51
for any transport type, 61, 99

receiving mail, DNS and, 74
receiving messages (Postfix system), 19,

20–22
email forwarding, 22
email notifications, 22
local email submission, 20
network email, 21

recipient addresses, 132
for queued messages, 62

recipient_canonical_maps parameter, 53, 210
recipients

for error messages, 61
local delivery, listing of, 81
multiple, for a message, 6
relayed mail, 104
variable expansion of list by pipe

daemon, 176
recursive lookups, 35
redelivery attempts for deferred messages, 59
regexp, 36
regular expressions

content checking parameters, lookup
tables for, 144

in lookup tables, 36
lookup tables for access maps, 138
lookup tables for content checking, 144
Perl-compatible (pcre), 36
POSIX extended (regexp)
testing with postmap command, 147

reject restriction, 134, 142
reject_code parameter, 211
rejected messages, 13

default time lapse before notifying
client, 134

Postfix reply codes to client, 132
(see also response codes)

rejecting messages
after content checking, 145
after checking access maps for clients, 137
spam

choosing 4xx or 5xx response
codes, 143

immediately during SMTP
conversation, 129

for unknown users, 55
reject_invalid_hostname parameter, 135,

142, 143

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 255

reject_non_fqdn_hostname, 140
reject_non_fqdn_recipient, 140
reject_non_fqdn_sender, 140
reject_rbl_client, 142
reject_rhsbl_client, 142
reject_rhsbl_sender, 142
reject_sender_login_mismatch, 157
reject_unauth_destination parameter, 135, 139
reject_unauth_pipelining, 140
reject_unknown_client, 141
reject_unknown_hostname, 141
reject_unknown_recipient_domain, 141
reject_unknown_sender_domain, 136, 141
relay addresses, 22

delivery of messages to, 23
relay control, 42

client-side certificate authentication, 44
dynamic IP solutions, 43
restricting relay access, 42
SMTP authentication, 43

relay delivery transport, 77
relay domains, 74
relay_domains parameter, 24, 104

configuring mail gateway to internal
system, 109

sites, flushing messages destined for, 67
relay_domains_reject_code parameter, 211
relayhost parameter, 111
relaying mail, 103–111

backup MX, 103–106
fast flushing, 105
relay recipients list, 104

client authentication for, 151
inbound mail gateway, 109
open relays, use by spammers, 127
outbound, 110
relay recipients, 104
spammer practices, 125
systems hijacked by spammers for, 128
transport maps, 106–109

entries, 106
postponing mail delivery, 108

UUCP, fax and others, 111
relay_recipient_maps parameter, 104

lists of valid recipients for, 110
relay_transport parameter, 211
reliability (of Postfix), 2
reloading Postfix

for main.cf changes to take effect, 33
postfix reload command, using, 45

relocated users, address rewriting for, 55
relocated_maps parameter, 35, 55, 211

remote users
IP addresses for, 43
SASL authentication of, 151

reply codes (see response codes)
repository for suspected spam, 130
Request for Comments (see RFCs)
requeuing messages, 65
resolv.conf file, 76
resolve_dequoted_address parameter, 211
resource errors, 61
resource records, 69

command-line tools for querying, 73
response codes

hard and soft reject responses, 135
for messages rejected by Postfix, 132
rejected request from unknown

client, 141
rejecting spam with 4xx or 5xx

codes, 143
request rejected for unknown

hostname, 141
requests rejected for non fully-qualified

hostname, 140
requests rejected for non fully-qualified

recipient address, 140
requests rejected for unknown recipient

domain, 141
requests rejected for unknown sender

domain, 141
SMTP, 17, 73

restriction classes, 131, 147
examples of, 148
exceptions to normal restrictions, 147

restrictions
assigned to client-detection rules, 131

access maps, 136–139
definitions of, 136
DNS restrictions, 140
example restriction, 135
generic restrictions, 142
how they work, 134
listing, 133
other, 139
realtime blacklists, 141
SMTP rules and restrictions, 131, 133
strict syntax, 140
testing new, 135

permit_sasl_authenticated, 157
Postfix anti-spam example, 149
reject_sender_login_mismatch, 157
tracing a restriction list, 142

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

256 | Index

retrieving mail from message store (see
POP/IMAP)

reverse lookup of IP addresses to
hostnames, 69

reverse PTR mapping to a hostname, 74
RFC 2142 (required mailbox names), 40
RFC 2554, “SMTP Service Extension for

Authentication”, 151
RFC 2821 (SMTP protocol), 15
RFC 2822 (email headers, message and

address format), 14
RFC 3207, SMTP extension known as

STARTTLS, 164
RFC 822 (email message format), 14
RFC 882 (defining DNS service), 68
RFCs (Request for Comments), 12
right hand side (or RHS) of email

addresses, 14
root account, 11

prompt, 11
aliases and owner identity, 40
services requiring root privileges, 49
system aliases pointed to, 40

routing email, 69–72
DNS, BIND configuration file, 70
DNS MX records, 70

rules for, 72
incoming mail, 22
MX records, 69

run time errors, 232

S
sample configuration files, 31
sample_directory parameter, 57, 211
SASL authentication, 43, 151–163

choosing authentication framework, 154
choosing authentication mechanism, 152
client authentication for STMP

server, 151
configuring Postfix for, 154–159

configuration summary, 159
enabling SASL, 157
parameters for SASL

authentication, 157
permitting authenticated users, 158
preventing sender spoofing, 157
specifying a framework, 155–156
specifying password mechanisms, 158

overview, 152
Postfix, using with, 154

requirements for, 154
SASLv2, 154

testing authentication
configuration, 159–161

SMTP client authentication, 162
saslauthd daemon, 155

-a option, 155
sasldb auxiliary property plug-in, 156
saslpasswd2 command, 156
saving spam into a suspected spam

repository, 130
search order, lookup tables, 35
seconds (s), 50
security, 2, 6–8

chroot environment for services, 56
design factors preventing attacks, 7
include files and, 40
modular Postfix architecture, 7
shells and processes, 7
Simple Authentication and Security Layer

(see SASL authentication)
Transport Layer Security (see TLS)

select_field parameter, 185, 187, 188
sender

of message in queue, 62
sender addresses

indicated in MAIL FROM command (see
MAIL FROM command)

spoofing, prevention of, 157
sender_canonical_maps parameter, 53
sending mail, DNS and, 72

Postfix configuration options, 73
reverse PTR records, 74

Sendmail, 1
alias files, format compatible with, 38
Postfix compatibility with, 2
-q option, specifying time between queue

scans, 46
security problems as privileged process, 7

sendmail command, 20, 25, 46, 175
sendmail_path parameter, 212
separate domains, 89

with system accounts, 90
with virtual accounts, 91, ??–95

service name (master.cf file), 48
session key (TLS), 166
setgid_group parameter, 212
shared domains, 89
shell script (wrapper for postcat

command), 66
shells, processes and, 7
showq_service_name parameter, 212
signed certificate, 166

acting as your own CA, 167

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 257

converting to users’ email client
format, 171

server, 169
Simple Authentication and Security Layer

(see SASL authentication)
Simple Mail Transport Protocol (see SMTP)
sites

blacklisted (see blacklisted sites)
eligible for fast flushing, 105
flushing messages destined for, 67

size
limiting for incoming messages, 51
of messages in queue, 62

S/Key (see OTP authentication mechanism)
S/MIME, 164
SMTP, 1, 4

client authentication, 162
enabling, 162

client authentication with SASL
protocol, 151

client-based rules and restrictions, listing
of, 133

client-based spam detection during
transaction, 131

conversation, with client-detection
rules, 131

deferring all deliveries, 109
email software packages, 4
email submission, 5
enhancements for, 18
envelope addresses, specifying, 14
ETRN command, 105
logging of conversation, 132
mail delivery outside of system, 25
overview of, 15–18
Postfix/TLS configuration, 168
receipt/delivery of messages by Postfix, 5
rejecting spam immediately during

conversation, 129
response codes for Postfix requests, 73
response codes, listed with definitions, 17
SASL authentication for telnet

client, 159–161
STARTTLS extension, 164
strict syntax

checking restrictions, client-based
rules, 136

parameters, 143
TLS client, configuring, 172

SMTP authentication, 43
for clients with dynamic IP addresses, 43

smtp client service, creating specialized, 51
smtp delivery agent, 23, 24

smtp transport, 78
smtp_bind_address parameter, 212
smtp_connect_timeout parameter, 51
smtpd daemon, 21, 25

limits on incoming mail, enforcement
of, 51

smtp_data_done_timeout parameter, 212
smtp_data_xfer_timeout parameter, 212
smtpd_banner parameter, 214
smtpd_client_restrictions

daemon-based filters and, 180
smtpd_client_restrictions parameter, 131
smtpd.conf file, 155

saslauthd, Postfix use for
authentication, 155

smtpd_data_restrictions parameters, 131,
214

smtpd_delay_reject parameter, 134
smtpd_error_sleep_time parameter, 51, 214
smtp_destination_concurrency_limit

parameter, 61
smtpd_expansion_filter parameter, 214
smtpd_hard_error_limit parameter, 51
smtpd_helo_required parameter, 143, 215
smtpd_helo_restrictions, 131, 132, 142

daemon-based filters and, 180
smtpd_history_flush_threshold

parameter, 215
smtpd_noop_commands parameter, 215
smtpd_recipient_limit parameter, 215
smtpd_recipient_restrictions parameter, 131,

135, 158
adding permit_tls_clientcerts to

restriction rules, 172
setting for daemon-based filter, 180

smtpd_restriction_classes parameter, 215
smtpd_sasl_auth_enable parameter, 157,

161
smtpd_sasl_security_options parameter, 158
smtpd_sender_login_maps parameter, 157
smtpd_sender_restrictions, 131, 143

daemon-based filters and, 180
smtpd_soft_error_limit parameter, 51, 215
smtpd_tls_ask_ccert parameter, 172
smtpd_tls_CAfile parameter, 169
smtpd_tls_CApath parameter, 169
smtpd_tls_cert_file parameter, 169
smtpd_tls_key_file parameter, 169
smtpd_use_tls parameter, 169
smtp_helo_timeout parameter, 213
smtp_mail_timeout parameter, 213
smtp_pix_workaround_delay_time

parameter, 213

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

258 | Index

smtp_quit_timeout parameter, 213
smtp_randomize_addresses parameter, 74
smtp_rcpt_timeout parameter, 214
smtp_sasl_auth_enable parameter, 162
smtp_sasl_password_maps parameter, 162
smtp_sasl_security_options parameter, 162
smtp_skip_5xx_greeting parameter, 214
smtp_tls_CAfile parameter, 173
smtp_tls_cert_file parameter, 172
smtp_tls_key_file parameter, 172
smtp_use_tls parameter, 172
sockets

LMTP server, 95
SMTP client connections to Postfix, 131
Unix-domain or TCP, for LMTP

deliveries, 85
socket_type parameter, 86
soft_bounce parameter, 216

testing new restrictions, 135
software errors, 61
software packages for Internet email, 4
spam, 125–150

anti-spam actions, 129
blocking with relay control, 42
configuring Postfix to check, 130–150

categories of spam detection, 130
client-detection rules, 131–143
content checking, 144–147
customized restriction classes, 147
strict syntax parameters, 143

detection of, 127–129
client-based, 128
content-based, 129
misidentifying legitimate messages as

spam, 127
primary methods for, 128
spammer tactics to circumvent, 129

dishonest components to, 125
incomplete addresses, use of, 53
luser_relay parameter and, 55
open realys, 127
Postfix anti-spam example, 149
problems caused by, 126
restriction list, tracing, 142

special characters, quoting in alias
definitions, 39

spoofing sender addresses, preventing, 157
SQL statement created by Postfix, 185
SSL (Secure Sockets Layer) (see TLS)
standard error (stderr), 11
standard input (stdin), 11

standard output (stdout), 11
standards adherence, filtering spam by (see

strict syntax checking)
starting Postfix, first time, 29

aliases file, system, 29
hostname for system, 29

starting Postfix with postfix start
command, 45

STARTTLS command, 166
status codes, SMTP server replies, 73
stopping Postfix (postfix stop command), 45
storage of email messages, 4
strace, 57
strict syntax

parameters for, 143
strict syntax checking

client restrictions based on, 136, 140
parameters for, 130

strict_7bit_headers parameter, 216
strict_8bitmime_body parameter, 216
strict_rfc821_envelopes parameter, 144, 216
strong authentication, 164
subdomains, masquerade domain names

and, 54
subnets, specifying with network/netmask

notation, 42
subscribing to Majordomo list, 120
superuser (see root account)
swap_bangpath parameter, 216
symbolic names for ports, 49
symlinks

chroot and, 57
for initialization script, 47

syntax, strict adherence to standards (see
strict syntax checking)

syslog daemon, 44
syslog_name parameter, 216
system accounts, 89

separate virtual domains with, 90
shared domains with, 90

system aliases, 40
system log files, 44
system startup

running Postfix at, 46–47
writing an initialization script, 46

starting saslauthd automatically at, 155

T
table parameter (MySQL), 185
targets for aliases, 39

restricting in alias files, 40

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Index | 259

TCP sockets, listening for LMTP
deliveries, 85

telnet, testing SASL authentication
with, 159–161

text editors, editing main.cf file, 31
time limits on deferred mail redelivery

attempts, 60
time units, 50, 195
TLS (Transport Layer Security), 44, 151,

164–173
certificates, 165

becoming a CA, 165
client-side, 170–172
generating server certificates, 167
installing CA certificates, 168
public-key cryptography, use of, 166

compiling, 229
configuring TLS-SMTP client, 172
Postfix and, 165
Postfix/TLS configuration, 168

summary of, 169
tmp directory (maildir), 80
To: address in email message headers, 14
tracing message through Postfix, 25–27
tracing service failures in chroot

environment, 57
Transport Layer Security (see TLS)
transport maps, 106–109

entries, 106
host, 106
port, 107
right hand side values, formats

for, 107
transport, 106

postponing mail delivery, 108
deferring delivery, 109
deferring mail relay, 108

transport table, listing of delivery agents, 24
transport types

inet, unix, and fifo, 48
master.cf file entry for, 106
valid service names for, 49

transport_destination_recipient_limit
parameter, 61, 99

transport_maps parameter, 100
configuring for LDAP, 192
lookup table, search order in, 35
pointing to transport lookup table, 110

transport_retry_time parameter, 217
transports

message delivery, configuration for, 60
Postfix delivery, 77

trivial-rewrite daemon, 20, 26
routing information, determining for

queue manager, 22
truss, 57
tusc, 57

U
UBE (Unsolicited Bulk Email) (see spam)
UIDs (user ids), Unix, 10
undeliverable messages,22
undisclosed_recipients_header

parameter, 217
Unix, 10

command prompts, 11
hostname command, 29
initialization scripts for, 46
login names and UIDs, 10
long lines, continuation with

backslashes, 12
man pages, 12
Postfix and, xii
pseudo accounts, 11
shell access to message store, 5
shell process, Postfix and, 7
standard input/standard output, 11
superuser (root) account, 11
system passwords as SASL authentication

framework, 155
unix (transportation type), 48
Unix-domain sockets, listening for LMTP

deliveries, 85
unknown_address_reject_code

parameter, 141
unknown_client_reject_code

parameter, 141, 217
unknown_hostname_reject_code

parameter, 141
unknown_local_recipient_reject_code

parameter, 217
unknown_virtual_alias_reject_code

parameter, 217
Unsolicited Bulk Email (UBE) (see spam)
upgrading Postfix, 228
user accounts

SASL, creating for SMTP server, 156
separate domains with virtual accounts

mailbox file ownership, 92
system

separate virtual domains with, 90
shared domains with, 90

system and virtual, 89
virtual, separate domains with, 91–95

V413HAV
Typewritten Text
V413HAV

This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

260 | Index

user parameter, setting for MySQL, 185
users

.forward files, checking by local delivery
agent, 23

NIS database of, 38
passwords (see passwords)
postfix user, 29
relocated, address rewriting for, 55
spam, labeling for, 130
unknown, 55

UUCP, setting up gateway for, 111
uuencoding, 15

V
variable expansion, 176
variables

configuration, 32
specifying path with variable

expansion, 81
Venema, Wietse, ix-x, 1
verbose logging information, 50
verp_delimiter_filter parameter, 217
Vexira AntiVirus for mail servers, 180
virtual accounts, 89

separate domains with, 91–95
separate password database for SMTP

users, 154
virtual alias addresses, 22, 23
virtual aliases, 74

catchall addresses with, 94
virtual delivery agent, 23, 92
virtual delivery transport, 78
virtual domains, 74, 89

DNS configuration, 90
MySQL configuration, 188
Postfix handling of mail for, 89

virtual mailbox addresses, 22
virtual mailbox catchall address, 94

virtual mailbox domains, virtual delivery
transport for, 78

virtual mailboxes, 74
virtual mailing list manager, configuring, 101
virtual_alias_domains parameter, 23, 90, 94
virtual_alias_maps parameter, 23, 35, 91, 93,

100, 218
virtual_gid_maps parameter, 93
virtual_mailbox_base parameter, 92, 218
virtual_mailbox_domains parameter, 23, 91,

94
listing virtual domains for mail

acceptance, 95
virtual_mailbox_limit parameter, 218
virtual_mailbox_maps parameter, 23, 92,

218
pointing to lookup file with valid

addresses, 95
virtual_transport parameter, 95, 218
virtual_uid_maps parameter, 93
viruses

anti-virus filters, 174, 175
scanning for with header checks, 146
Vexira AntiVirus program, 180

W
wakeup (master.cf), 50
warn_if_reject parameter, 135
warning message after content checking, 145
web site, Postfix online documentation, 57
weeks (w), 50
well-known ports (port 25 for SMTP

servers), 16
where_field parameter (MySQL), 185, 187
whitelist applications (pre-approval for

sending mail), 127
WHOSON, 43

About the Author
Kyle D. Dent works as an independent consultant and software developer in the New
York metropolitan area. He has designed and implemented various security, network,
and web-based applications for technology and financial firms. He has been working
with Postfix in various settings since it was released by IBM in 1998.

Kyle grew up with computers in an IBM family, but originally started working in
publishing and as a teacher of English as a Second Language. He is an avid supporter
of public libraries, serving as a trustee at his local library and on the board of his
regional library system. He has recently started to learn the classical guitar.

Colophon
Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Postfix: The Definitive Guide is a dove. Doves belong to
the class Aves (birds) and the order Columbiformes (doves and pigeons), to which the
now-extinct dodo bird (Raphus cucullatus) also belonged. Their family, Columbidae,
includes over 300 species of pigeons and doves, including the common rock dove or
feral pigeon (Columba livia).

In 1679, the French astronomer Augustin Royer discovered the dove-shaped constel-
lation Columba. A constellation in the southern hemisphere, located near Puppis
and Caelum, Columba’s stars were originally part of the constellation Canis Major.

Reg Aubry was the production editor and copyeditor, and Matt Hutchinson was the
proofreader for Postfix: The Definitive Guide. Colleen Gorman and Claire Cloutier
provided quality control. Mary Agner provided production assistance. Ellen
Troutman-Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is an original illustration created by Susan Hart. Emma
Colby produced the cover layout with QuarkXPress 4.1 using Adobe’s ITC Garamond
font.

David Futato designed the interior layout. This book was converted by Joe Wizda to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIn-
tosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSans Mono Condensed. The illustrations that appear in the
book were produced by Robert Romano and Jessamyn Read, using Macromedia
FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by
Christopher Bing. This colophon was written by Leanne Soylemez and Reg Aubry.

	Table of Contents
	Foreword
	Preface
	Audience
	Organization
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Introduction
	Postfix Origins and Philosophy
	Email and the Internet
	Email Components
	Major Email Protocols
	SMTP and email submission
	POP/IMAP and mailbox access

	The Role of Postfix
	Postfix Security
	Modular Design
	Shells and Processes
	Security by Design

	Additional Information and How to Obtain Postfix

	Prerequisites
	Unix Topics
	Login Names and UID Numbers
	Pseudo-Accounts
	Standard Input/Standard Output
	The Superuser
	Command Prompts
	Long Lines
	ManPages

	Email Topics
	RFCs
	Email Agents
	The Postmaster
	Reject or Bounce
	Envelope Addresses and Message Headers
	Local Parts of Email Addresses
	Email Message Format
	RFC 2822 messages

	The SMTP Protocol

	Postfix Architecture
	Postfix Components
	How Messages Enter the Postfix System
	Local Email Submission
	Email from the Network
	Postfix Email Notifications
	Email Forwarding

	The Postfix Queue
	Mail Delivery
	Local Delivery
	Virtual Alias Messages
	Virtual Mailbox Messages
	Relay Messages
	Other Messages
	Other Delivery Agents
	Delivery via LMTP
	Pipe delivery

	Tracing a Message Through Postfix

	General Configuration and Administration
	Starting Postfix the First Time
	Configuration Files
	The main.cf Configuration File
	Line continuation
	Configuration variables
	Multiple values

	Lookup Tables
	Lookup table format
	Database formats
	Search order
	Lookup tables and simple lists
	Regular expression tables

	Other Formats
	Alias Files
	Locating aliases
	Building alias database files
	Alias file format
	Alias restrictions
	Important aliases

	Important Configuration Considerations
	Configuring Your MTA Identity
	myhostname and mydomain
	myorigin
	mydestination

	Relay Control
	Restricting relay access
	SMTP authentication
	Dynamic IP solutions
	Certificate authentication

	Administration
	Logging
	Starting, Stopping, and Reloading Postfix
	Running Postfix at System Startup
	Do it yourself

	Queue Management

	master.cf
	Receiving Limits
	Rewriting Addresses
	Canonical Addresses
	Masquerading Hostnames
	Relocated Users
	Unknown Users

	chroot
	Documentation

	Queue Management
	How qmgr Works
	Deferred Mail
	Queue Scheduling
	Message Delivery
	Corrupt Messages
	Error Notifications

	Queue Tools
	Listing the Queue
	Deleting Messages
	Holding Messages
	Requeuing Messages
	Displaying Messages
	Flushing Messages

	Email and DNS
	DNS Overview
	Email Routing
	Postfix and DNS
	DNS and Sending Mail
	Configuration options
	Reverse PTR records

	DNS and Receiving Mail

	Common Problems

	Local Delivery and POP/IMAP
	Postfix Delivery Transports
	Message Store Formats
	The Mbox Format
	The Maildir Format
	Mbox Versus Maildir

	Local Delivery
	.forward Files
	Alias Deliveries
	Mailbox Delivery

	POP and IMAP
	POP Versus IMAP
	Postfix and POP/IMAP Servers

	Local Mail Transfer Protocol
	Postfix and Cyrus IMAP
	A Postfix and Cyrus IMAP Example

	Hosting Multiple Domains
	Shared Domains with System Accounts
	Separate Domains with System Accounts
	Separate Domains with Virtual Accounts
	Mailbox File Ownership
	Virtual Aliases
	Catchall Addresses
	Virtual mailbox catchall
	Virtual alias catchall

	Separate Message Store
	Delivery to Commands
	Configuring a Virtual Auto-Responder
	Configuring a Virtual Mailing List Manager

	Mail Relaying
	Backup MX
	Relay Recipients
	Fast Flushing

	Transport Maps
	Postponing Mail Delivery
	Deferring mail relay
	Deferring delivery

	Inbound Mail Gateway
	Outbound Mail Relay
	UUCP, Fax, and Other Deliveries

	Mailing Lists
	Simple Mailing Lists
	Mailing-List Owners
	Separate List Files
	Additional Alias Files
	Creating a Simple Mailing List
	Testing Your List

	Mailing-List Managers
	Majordomo
	Creating a Majordomo list
	Potential problems

	Mailman
	Creating a Mailman list

	Blocking Unsolicited Bulk Email
	The Nature of Spam
	The Problem of Spam
	Open Relays
	Spam Detection
	Client-Based Spam Detection
	DNS-based blacklists

	Content-Based Spam Detection
	Detection Difficulties

	Anti-Spam Actions
	Postfix Configuration
	Client-Detection Rules
	The SMTP Conversation (Briefly)
	Listing Restrictions
	How restrictions work
	Testing new restrictions
	A simple example

	Restriction Definitions
	Access maps
	Other client-checking restrictions
	Strict syntax restrictions
	DNS restrictions
	Real-time blacklists
	Generic restrictions

	Tracing a Restriction List

	Strict Syntax Parameters
	Content-Checking
	Content Checking Configuration
	Content Checking Actions
	Comparing Patterns

	Customized Restriction Classes
	Sample Restriction Classes

	Postfix Anti-Spam Example

	SASL Authentication
	SASL Overview
	Choosing an Authentication Mechanism
	Choosing an Authentication Framework

	Postfix and SASL
	Configuring Postfix for SASL
	Specifying a Framework
	Unix passwords
	SASL passwords

	Configuring Postfix
	Enabling SASL
	Preventing sender spoofing
	Permitting authenticated users
	Specifying mechanisms

	Configuration Summary

	Testing Your Authentication Configuration
	SMTP Client Authentication
	Procedure to Enable SMTP Client Authentication

	Transport Layer Security
	Postfix and TLS
	TLS Certificates
	Becoming a CA
	Generating Server Certificates
	Installing CA Certificates
	Postfix/TLS Configuration
	Postfix/TLS Configuration Summary
	Requiring Client-Side Certificates
	Creating client certificates
	Configuring client-side certificate authentication

	Configuring TLS/SMTP Client

	Content Filtering
	Command-Based Filtering
	Configuration

	Daemon-Based Filtering
	Configuration
	Creating a pseudoaccount
	Installing a content filter
	Configuring additional Postfix components
	Turning on filtering

	Daemon-Based Filter Example

	Other Considerations

	External Databases
	MySQL
	MySQL Configuration
	MySQL parameters

	MySQL Example
	Configuring local_recipient_maps
	Configuring alias_maps
	Configuring virtual domains

	LDAP
	LDAP Configuration
	LDAP Example
	Configuring local_recipient_maps
	Configuring transport_maps

	Configuration Parameters
	Postfix Parameter Reference
	2bounce_notice_recipient
	access_map_reject_code
	alias_maps
	allow_mail_to_files
	allow_percent_hack
	alternate_config_directories
	append_at_myorigin
	authorized_verp_clients
	berkeley_db_read_buffer_size
	biff
	body_checks_size_limit
	bounce_service_name
	canonical_maps
	command_directory
	command_time_limit
	content_filter
	daemon_timeout
	debug_peer_list
	default_destination_concurrency_limit
	default_extra_recipient_limit
	default_process_limit
	default_recipient_limit
	default_verp_delimiters
	defer_service_name
	delay_notice_recipient
	deliver_lock_attempts
	disable_dns_lookups
	disable_mime_output_conversion
	disable_vrfy_command
	double_bounce_sender
	empty_address_recipient
	error_service_name
	export_environment
	fallback_relay
	fast_flush_domains
	fast_flush_refresh_time
	fork_attempts
	forward_expansion_filter
	hash_queue_depth
	header_address_token_limit
	header_size_limit
	home_mailbox
	ignore_mx_lookup_error
	in_flow_delay
	initial_destination_concurrency
	ipc_idle
	line_length_limit
	lmtp_connect_timeout
	lmtp_data_init_timeout
	lmtp_lhlo_timeout
	lmtp_quit_timeout
	lmtp_rset_timeout
	lmtp_tcp_port
	local_destination_concurrency_limit
	local_recipient_maps
	luser_relay
	mail_owner
	mail_spool_directory
	mailbox_command
	mailbox_delivery_lock
	mailbox_transport
	manpage_directory
	masquerade_domains
	max_idle
	maximal_backoff_time
	message_size_limit
	mime_header_checks
	minimal_backoff_time
	mydomain
	mynetworks
	myorigin
	newaliases_path
	notify_classes
	parent_domain_matches_subdomains
	pickup_service_name
	process_id_directory
	proxy_interfaces
	qmgr_clog_warn_time
	qmgr_message_active_limit
	qmgr_message_recipient_minimum
	qmqpd_error_delay
	queue_directory
	queue_run_delay
	rbl_reply_maps
	recipient_canonical_maps
	reject_code
	relay_domains_reject_code
	relay_transport
	relocated_maps
	resolve_dequoted_address
	sample_directory
	sendmail_path
	setgid_group
	showq_service_name
	smtp_bind_address
	smtp_data_done_timeout
	smtp_data_xfer_timeout
	smtp_destination_recipient_limit
	smtp_helo_timeout
	smtp_mail_timeout
	smtp_pix_workaround_delay_time
	smtp_quit_timeout
	smtp_rcpt_timeout
	smtp_skip_5xx_greeting
	smtpd_banner
	smtpd_data_restrictions
	smtpd_error_sleep_time
	smtpd_expansion_filter
	smtpd_helo_required
	smtpd_history_flush_threshold
	smtpd_noop_commands
	smtpd_recipient_limit
	smtpd_restriction_classes
	smtpd_soft_error_limit
	soft_bounce
	strict_7bit_headers
	strict_8bitmime_body
	strict_rfc821_envelopes
	swap_bangpath
	syslog_name
	transport_retry_time
	undisclosed_recipients_header
	unknown_client_reject_code
	unknown_local_recipient_reject_code
	unknown_virtual_alias_reject_code
	verp_delimiter_filter
	virtual_alias_maps
	virtual_mailbox_base
	virtual_mailbox_limit
	virtual_mailbox_maps
	virtual_transport

	Postfix Commands
	Compiling and Installing Postfix
	Obtaining Postfix
	Postfix Compiling Primer
	Compiler Options
	Linker Options

	Building Postfix
	Customizing Your Build
	Modifying Postfix Defaults

	Installation
	Upgrading

	Compiling Add-on Packages
	Cyrus SASL
	TLS
	MySQL
	LDAP

	Common Problems
	Compile Time
	Runtime

	Wrapping Things Up

	Frequently Asked Questions
	Index

